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Abstract
Advances in DNA microarray technologies have made gene expression profiles a signifi-

cant candidate in identifying different types of cancers. Traditional learning-based cancer

identification methods utilize labeled samples to train a classifier, but they are inconvenient

for practical application because labels are quite expensive in the clinical cancer research

community. This paper proposes a semi-supervised projective non-negative matrix factori-

zation method (Semi-PNMF) to learn an effective classifier from both labeled and unlabeled

samples, thus boosting subsequent cancer classification performance. In particular, Semi-

PNMF jointly learns a non-negative subspace from concatenated labeled and unlabeled

samples and indicates classes by the positions of the maximum entries of their coefficients.

Because Semi-PNMF incorporates statistical information from the large volume of unla-

beled samples in the learned subspace, it can learn more representative subspaces and

boost classification performance. We developed a multiplicative update rule (MUR) to opti-

mize Semi-PNMF and proved its convergence. The experimental results of cancer classifi-

cation for two multiclass cancer gene expression profile datasets show that Semi-PNMF

outperforms the representative methods.

Introduction
In cancer prognosis and treatment, it is crucial to identify different cancer types and subtypes.
Traditional methods often rely on similar morphological appearances but easily induce different
clinical courses and responses to therapy because of subjective interpretations and personal
experience. This usually results in diagnostic confusion. Fortunately, the emergence of the DNA
microarray technique removes this barrier in an objective and systematic manner and has
showed great potential in outcome prediction of cancer types in genome-wide scales [1–11].

Numerous learning methods have been developed for cancer classification based on gene
expression profiles [1–3]. For instance, Golub et al. [1] used a weighted voting scheme for the
molecular classification of acute leukemia. Nguyen et al. [3] incorporated partial least squares
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(PLS) into the logistic discrimination and quadratic discriminant analysis for tumor classifica-
tion. However, these methods are not convenient for practical applications because the labeled
samples are quite expensive in the clinical cancer research community. To overcome this defi-
ciency, Xu et al. [12] used the semi-supervised Ellipsoid ARTMAP (ssEAM) method for cancer
classification. Shi et al. [13] utilized the semi-supervised method termed low density separation
(LDS, [14]) to classify different types of cancers. Moreover, Maulik et al. [15] investigated the
effectiveness of transductive SVM (TSVM, [16]) in cancer classification. Nevertheless, these
algorithmic challenges involve the curse of dimensionality, which indicates that the overwhelm-
ing number of measures for gene expression levels contrast with the small number of samples.

This problem often calls for dimension reduction techniques. This paper focuses on non-
negative matrix factorization (NMF, [17, 18]) because it is a flexible framework for conducting
dimension reduction and performing classification and clustering tasks [19–26]. NMF decom-
poses a data matrix into the product of two non-negative factors. Due to its effectiveness, NMF
and its variants have been applied to analyzing large-scale gene expression datasets [27–29],
cancer classification [30, 31] and new class discovery [30]. Brunet et al. [31] originally adopted
NMF to uncover molecular meta-patterns by clustering samples of leukemia, medulloblastoma
and central nervous system tumors, and indicating that NMF outperforms both hierarchy clus-
tering (HC) and self-organizing map (SOM). However, NMF does not explicitly guarantee the
sparseness of the decomposition and violates the uniqueness property. Recent works [32] show
that this often degrades the clustering performance. To address this issue, Li et al. [32] pro-
posed local NMF (LNMF) to overcome this deficiency by imposing the sparse constraints over
the decomposition. Hoyer et al. proposed sparse NMF (SNMF, [33]) to enforce sparseness in
NMF by penalizing the number of non-zero entries of the coefficients rather than the sum of
the entries. Furthermore, Gao et al. [34] utilized SNMF to identify the meta-patterns of various
cancers for identifying different types of tumors.

Because the aforementioned methods follow regularization theory, they are jointly non-con-
vex and are difficult to optimize. Unlike the above methods, Yuan et al. [35] developed the pro-
jective NMF (PNMF) to induce parts-based representation by implicitly imposing the
orthogonal constraint over the basis. However, because these methods are unsupervised learn-
ing methods that do not take into account labels, their performance in cancer classification can
be further improved. In this paper, we propose a semi-supervised projective NMF method
(Semi-PNMF) that utilizes both labeled and unlabeled samples to boost classification perfor-
mance. Particularly, Semi-PNMF learns a non-negative subspace from concatenated labeled
and unlabeled samples and predicts classes by the index of the largest entries of their coeffi-
cients. Benefiting from the unlabeled data, Semi-PNMF can learn more representative sub-
spaces, which are beneficial for classification tasks. We explored a multiplicative update rule
(MUR) to solve Semi-PNMF and proved its convergence. The experimental results of cancer
identification for multiclass cancer gene expression profile datasets including GCM [8] and
Acute Leukemia [36] datasets show that Semi-PNMF outperforms the representative methods
in terms of quantity.

Materials and Methods

Semi-supervised Projective Nonnegative Matrix Factorization
Projective non-negative matrix factorization (PNMF) learns a non-negative projection matrix
to project high-dimensional data into the lower-dimensional subspace. Because it can learn
parts-based representation, PNMF has been widely applied in pattern recognition [21, 26, 35,
37]. Here, we introduce the other representation form of PNMF that learns the lower-dimen-
sional coefficients of samples to approximate the class indicator for clustering. This is based on
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the assumption that the basis lies in the subspace spanned by the original samples. Given the
data matrix V = [v1,� � �,vn]T 2 Rn × m, where n denotes the number of samples andm their
dimensionality, PNMF learns the coefficientsH 2 Rn × r to represent original samples, i.e.,

min
H�0

k V � HHTV k2F; ð1Þ

where k•kF denotes the matrix Frobenius norm and r the number of clusters.
As in objective (1), it is non-trivial to analyze the convergence in theory because Eq (1) con-

tains a fourth-order term. To remove such a high order term, we first introduce an auxiliary
variable, i.e., the cluster centroids, and the equality constraint into Eq (1). Thus, we can obtain

min
H�0

k V � HW k2F ;

s:t:;W ¼ HTV :
ð2Þ

The objective is very similar to BPNMF [26], but we cannot directly apply the optimization
algorithm of BPNMF to optimize it especially when additional constraints such as the sparse-
ness constraint and Laplacian regularization are imposed over the coefficients, as these con-
straints easily induce PNMF to produce the trivial solution. To avoid such a drawback, we
propose a semi-supervised PNMF method (Semi-PNMF) by recasting Eq (2) as

min
H;W�0

1

2
k V � HW k2F þ

a
2
kW � HTV k2F; ð3Þ

where α� 0 is a regularization constant andW denotes the non-negative cluster centroid.
Model (3) significantly differs from BPNMF because Eq (3) favors the representative capacity
of the cluster centroids, while BPNMF focuses on the orthogonality of the non-negative sub-
space. Thus, Eq (3) induces the sparse coefficients, while BPNMF produces the sparse basis.

According to Eq (3), we can incorporate the local coordinate constraint [38] to improve the
representative power of the basis, meanwhile further inducing the sparse coefficients to be true
classes. Thus, we recast Eq (3) as the following regularization form:

min
H;W�0

1

2
k V � HW k2F þ

a
2
kW � HTV k2F þ

b
2

Xn

i¼1

Xr

j¼1
jHijj k Vi �Wj k22; ð4Þ

where β trades off the local coordinate regularization andHij denotes the i-the row and j-th col-
umn element of coefficients H,Wj and Vi, signifying the i-th and j-th row vector ofW and V,
respectively.

To make full use of partial labeled samples, we propagate the labels of labeled samples to
unlabeled ones by minimizing the distance between their coefficients and the corresponding
class indicator. Particularly, we require the coefficients of labeled samples to be equivalent with
the corresponding class indicator. Consider the first d examples labeled and the rest unlabeled;

the data matrix V can be divided into two parts, i.e., V ¼ ½VT
L ;V

T
U �T . Then, we can obtain the

objective function of Semi-PNMF as follows:

min
W;HU�0

J ¼ 1

2 k VL

VU

" #
�

Q

HU

" #
Wk2

F

þ a
2
kW � HT

UVU k2F þ
b
2

XnU
i¼1

Xr

j¼1
Hij

U

�� �� k Vi
U �Wj k22; ð5Þ

where Q denotes the partial label matrix wherein Qij = 1 if vi belongs to the j-th class; otherwise,
Qij = 0. BothHU and nU denote the coefficients and number of the unlabeled samples,
respectively.
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Interestingly, Semi-PNMF has two distinct aspects. First, it replaces the learned coefficients
of the labeled samples with the corresponding class indicator. The constraint is so strong that
the learned basis completely biases the labeled samples. This might induce the trivial solution
to the coefficients of the unlabeled samples. Second, Semi-PNMF completely ignores the
representation contribution of the labeled samples. It is so unintelligible that the learned basis
only favors the unlabeled samples. It appeared that both aspects contradict each other, but
intrinsically, they mutually complement each other in our Semi-PNMF. In essence, the first
aspect corresponds to supervised learning, which generates the reasonable solution yet does
not ensure it is consistent with the underlying data distribution, while the second one consid-
ers data distribution but cannot yield the reasonable solution. Thus, the combination of both
aspects can mutually complement each other. Semi-PNMF learns the shared basis by the
labeled and unlabeled instances, meanwhile inducing similar instances to have a similar repre-
sentation, i.e., the coefficients. Because we impose the restriction that coefficients of the
labeled samples be their labels as well as the local coordinate constraint over the basis and
coefficients, the unlabeled sample coefficients are implicitly as sparse as the label vectors. In
this way, Semi-PNMF effectively propagates the labels of labeled samples to the unlabeled
ones. Consequently, in cancer classification, it is reasonable that, for each unlabeled sample,
we choose the index of the largest entry of its coefficient to predict the classes of this sample
once objective (5) yields their coefficients. The above intuition can be further verified by the
toy example given in Figs 1 and 2.

Optimization Algorithm
It is difficult to optimize Eq (5) because it is jointly non-convex with respect to bothW andH.
Fortunately, it is convex with respect toW and H, respectively. Thus, we can establish the fol-
lowing theorem:

Theorem 1: The objective function (5) is non-increasing under the following multiplicative
update rules:

W ¼W � QTVL þ ð1þ aþ bÞHT
UVU

QTQW þ HT
UHUW þ aW þ bFUW

; ð6Þ

, and

HU ¼ HU �
ð1þ aþ bÞVUW

T

HUWWT þ aVUVT
UHU þ b=2ðAþ BÞ ; ð7Þ

where� denotes the element-wise product operator, FU = diag(sum(HU)), A = [a,� � �,a]
wherein a ¼ diagðVUV

T
UÞ, and B = [b,� � �,b], wherein b = diag(WWT).

Proof. According to Eq (5), we can obtain the objective with respect toW as follows:

JðWÞ ¼ 1

2
Trð�2VLW

TQT þ QWWTQTÞ þ 1

2
Trð�2VUW

THT
U þ HUWWTHT

UÞ

þ a
2
TrðWWT � 2WVT

UHUÞ þ
b
2
Trð

XnU
i¼1
ðVi

UÞT1TLi1V
i
U � 2WTHT

UVU þWTFUWÞ
; ð8Þ

where Li
U denotes the diagonal matrix whose diagonal elements are the i-th row vector values

of VU.
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By Eq (8), we can define the auxiliary function of J(W) as

GðW;W 0Þ ¼ �ð1þ aÞTrðWVT
UHUÞ � TrðWVT

L QÞ

þ 1

2

X
ij

ðQTQW 0Þij
W 0

ij

W2
ij þ

1

2

X
ij

ðHT
UHUW

0Þij
W 0

ij

W2
ij þ

a
2
TrðWWTÞ

� bTrðWTHT
UVUÞ þ

b
2

X
ij

ðFUW
0Þij

W 0
ij

W2
ij :

ð9Þ

Obviously, objective (9) has

GðW;W 0Þ � JðWÞ ¼ GðW;WÞ: ð10Þ

Fig 1. The toy example illustrating (a) the synthetic 3D original data including the labeled and unlabeled samples and the ground-truth labels, (b)
the labeled results of unlabeled samples, (c) the learned coefficients of the unlabeled samples, and (d) the learned basis by Semi-PNMF. In Fig (a),
both the square and circle markers signify the unlabeled and labeled samples, respectively, and three different colors stand for three different categories. Fig
(b) shows that the unlabeled samples are marked as the ground-truth markers and colors. Figs (c) and (d) shows the coefficients and basis learned by Semi-
PNMF, respectively. The index of maximum value of the coefficient for an unlabeled sample appears in red and indicates its class.

doi:10.1371/journal.pone.0138814.g001
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We can obtain the derivative of Eq (9) as follows:

@GðW;W 0Þ
@Wij

¼ �ðð1þ aÞHT
UVU � QTVLÞij þ

ðQTQW 0Þij
W 0

ij

Wij

þðH
T
UHUW

0Þij
W 0

ij

Wij þ aWij � bðHT
UVUÞij þ b

ðFUW
0Þij

W 0
ij

Wij;

ð11Þ

Based on Eq (11), we have

Wij ¼W 0
ij

ðQTVL þ ð1þ aþ bÞHT
UVUÞij

ðQTQW 0 þ HT
UHUW 0 þ aW 0 þ bFUW 0Þij

: ð12Þ

Fig 2. The toy example illustrating the labeling results obtained from the coefficients when the propagation procedure arrives at the (a)
initialization stage, (b) 50-th iteration round, (c) 300-th iteration round, and (d) the resultant convergence (1500-th iteration round), respectively.

doi:10.1371/journal.pone.0138814.g002
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By simple algebra, the formula (6) can be deduced from Eq (12). Likewise, we can obtain the
auxiliary function of J(HU) as follows:

GðHU ;H
0
UÞ ¼ �ð1þ aÞTrðWVT

UHUÞ

þ 1

2

X
ij

ðH 0UWWTÞij
ðH 0UÞij

ðHUÞ2ij þ
a
2

X
ij

ðVUV
T
UH

0
UÞij

ðH 0UÞij
ðHUÞ2ij

þ b
2
TrðHT

UA� 2WTHT
UVU þ BHT

UÞ;

ð13Þ

Setting
@GðHU ;H0U Þ
@ðHU Þij ¼ 0, we have

ðHUÞij ¼ ðH 0UÞij
ð1þ aþ bÞðVUW

TÞij
ðH 0UWWT þ aVUVT

UH
0
U þ b=2ðAþ BÞÞij

; ð14Þ

Thus, according to Eq (14), we also obtain the update rule (7) for HU.
Moreover, according to Eqs (10), (12) and (14), we have

JðWtþ1;Htþ1
U Þ � JðWtþ1;Ht

UÞ � JðWt;Ht
UÞ: ð15Þ

Based on Eq (15), these update rules always guarantee that the objective function monotoni-
cally decreases. Thus, this completes the proof. ■

According to the above theorem, we summarize the multiplicative update rule (MUR) for
Semi-PNMF in Algorithm 1.

Algorithm 1 MUR for Semi-PNMF
Input: Examples V 2 Rm × n, penalty parameter α, partial label matrix Q.
Output: HU.

1: Randomly initialize W0 andH0
U, and l = 0.

2: repeat
3: Update Wl+1 according to Eq (6).
4: CalculateHlþ1

U according to Eq (7).
5: l l+1.

6: until {Stopping criterion kJ
lþ1�JlkF
kJlkF < ε is satisfied.}

7:HU ¼ Hl
U.

To reduce the time overhead, Algorithm 1 utilizes the objective relative error as the stop-
ping criterion; in addition, set ε to 10−7 in our experiments. The main time cost of Algorithm
1 lies in line 3 and line 4. Their time complexities are O(r2n+mrn+r2m+rm) and O(mr(n − d)
+r2m+rm+r2+r2(n − d)), respectively. Thus, the total time complexity of Algorithm 1 is O(r2

n+mrn+mr(n − d)+mrd+r2m+rm+r2+r2(n − d)).

Results
This section conducts a series of experiments on both synthetic and real-world datasets to ver-
ify the method proposed in this paper.

Semi-PNMF for Cancer Classification
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Synthetic Dataset
This section generates a small synthetic dataset to clarify the mechanism of Semi-PNMF. The
synthetic dataset consists of three categories constructed by the following random samples:

y1 ¼ ½1; 0:8; 0:8�T þ 0:1x;

y2 ¼ ½0:8; 0:8; 0:8�T þ 0:1x;

and

y3 ¼ ½0:8; 1; 0:7�T þ 0:15x;

where x 2 R3, and each of its entry is sampled from the standard uniform distribution U(0,1).
For each category, we randomly generated 10 samples, within which three samples were
selected as labeled samples and the rest as unlabeled ones. Therefore, the synthetic dataset con-
tains 30 samples in total. For clear illustration, three categories are marked as three different
colors, and the labeled and unlabeled samples are distinguished by two shapes.

Fig 1(a) and 1(b) shows the ground truth and resultant labeled results of the unlabeled sam-
ples by Semi-PNMF, respectively, while Fig 1(c) and 1(d) displays the learned coefficients of
the unlabeled samples and basis. In Fig 1(d), each row of the learned basis has different colors,
implying that the basis stands for the centroids of different categories and owns the discrimina-
tive representation ability. According to Fig 1(c), each row of the learned coefficients is the
lower-dimensional coefficient of the corresponding unlabeled sample. The larger the entry of
the coefficient is, the darker its color is. As shown in Fig 1(c), the maximum entry of the coeffi-
cient largely exceeds the other entries. All maximum entries make the coefficients take up the
diagonal form and imply the cluster memberships of all the samples. Thus, it is reasonable to
select the index of the maximum entry of the coefficient as the classes of an unlabeled sample.
This verifies our previous intuition. Since all samples shares the common basis, their coeffi-
cients become close to each other if they have the same labels. We impose the restriction that
the coefficients of labeled samples be equivalent to their label vectors, and thus this also induces

Table 1. Description of the GCM dataset.

Cancer Types Number of Samples

Breast adenocarcinoma (BR) 12

Prostate adenocarcinoma (PR) 14

Lung adenocarcinoma (LU) 12

Colorectal adenocarcinoma (CO) 12

Lymphoma (LY) 22

Bladder transitional cell carcinoma (BL) 11

Melanoma (ML) 10

Uterus adenocarcinoma (UT) 10

Leukemia (LE) 30

Renal cell carcinoma (RE) 11

Pancreas adenocarcinoma (PA) 11

Ovarlan adenocarcinoma (OV) 12

Pleural mesothelioma (MS) 11

Central nervous system (CNS) 20

Total 198

doi:10.1371/journal.pone.0138814.t001

Semi-PNMF for Cancer Classification

PLOS ONE | DOI:10.1371/journal.pone.0138814 September 22, 2015 8 / 20



the coefficients of the unlabeled to be close to their label vectors. In this way, Semi-PNMF can
propagate the labels of the labeled samples to the unlabeled ones. The propagation procedure is
illustrated in Fig 2.

GCMDataset
This experiment merely compares traditional semi-supervised learning methods including low
density separation (LDS, [14]), transductive SVM (TSVM, [16]), constrained NMF (CNMF,
[24]), soft-constrained NMF (SCNMF, [25]) and Semi-PNMF by separating different types of
cancers on the GCM dataset. The GCM dataset [8] contains the expression profiles of 218
tumor samples representing 14 common human cancer classes. It is available on the public
website: http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi, and can also be down-
loaded from the website: https://zenodo.org/record/21712. According to [8], we combine the
training and testing set of this gene expression data into a dataset for cancer classification.
Thus, the combined dataset contains 198 samples with 16,063 genes. Table 1 gives a brief
description of this dataset. To remove very low noisy values and saturation effects of very high
values, we bound the gene expression data into a specific box constraint ranging from 20 to
16,000 units and then exclude those genes whose ratios and absolute variations across samples
are under 5 and 500, respectively. Consequently, the resultant expression profile dataset con-
tains the 11,370 genes passing. We compare the effectiveness of Semi-PNMF with LDS, TSVM,
CNMF and SCNMF under varying configurations. Both CNMF and SCNMF involve no
parameter tuning. For Semi-PNMF, we set two parameters α = 2, and β = 0.0001, respectively.
Because these representative methods enable convergence within 1,500 iteration rounds, we set
the maximum number of loops to 1,500. For LDS and TSVM, we adopt the parameter settings
provided in the source code to obtain the classification results.

We evaluate the cancer classification by the cross-validation over the whole dataset. This pro-
cess selects one sample as the unlabeled sample and, meanwhile, learns the prediction model on
all the samples for cancer diagnosis. For the unlabeled sample, we choose the index of the largest
value of the resultant consensus matrix to predict the classes of this sample. As shown in Figs 3
to 7, the confusion matrix of the predicted results of Semi-PNMF, CNMF, SCNMF, LDS and
TSVM are reported in detail. Each column denotes howmany the unlabeled samples are
assigned to each cancer, while each row signifies the number of the unlabeled samples affiliated
to the real tumor type. Each color not only represents a specific cancer type but also highlights
the correct prediction results, i.e., the diagonal elements of the confusion matrix.

Figs 3 to 7 imply that Semi-PNMF can identify different tumor types more accurately than
the representative methods. For example, when working with two labeled samples from each
tumor type, Semi-PNMF achieves 70.71% classification accuracy and exceeds LDS, TSVM,
SCNMF, and CNMF by 10.6%, 21.72%, 21.72%, and 32.3%, respectively. Moreover, Table 2 fur-
ther implies the effectiveness of Semi-PNMF compared with CNMF, SCNMF, TSVM, and LDS
in terms of both sensitivity and specificity. For completeness, we list their definitions as follows:

sensitivity ¼ TP
TP þ FN

; ð16Þ

and

specificity ¼ TN
TN þ FP

; ð17Þ

where TP, TN, FP, and FN denote the number of true positive, true negative, false positive and
false negative samples, respectively.
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The number of labeled examples is an important factor affecting the performance of semi-
supervised learning methods. Hence, it is very necessary to observe the classification accuracy
of Semi-PNMF under different numbers (1–6) of labeled samples in each class. Here, we ran-
domly select different numbers of examples from each class as labeled examples and regard the

Fig 3. Confusion matrix of prediction results using Semi-PNMF, which achieves a total accuracy of 70.71%.Matrix delineates distribution of actual
compared with predicted class membership for multiclass cancer prediction on the GCM dataset.

doi:10.1371/journal.pone.0138814.g003

Fig 4. Confusion matrix of prediction results using SCNMF, which achieves a total accuracy of 48.99%.Matrix delineates distribution of actual
compared with predicted class membership for multiclass cancer prediction on the GCM dataset.

doi:10.1371/journal.pone.0138814.g004
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rest as unlabeled. For fair comparison, we independently conduct 100 individual experiment
trails to remove the effect of randomness.

Fig 8 compares the average accuracy of CNMF, SCNMF, TSVM, LDS, and Semi-PNMF under
different numbers of labeled samples for each class. It also shows that Semi-PNMF achieves the
highest accuracy and takes on an increasing tendency with the rise in the number of labeled samples.

Fig 5. Confusion matrix of prediction results using CNMF, which achieves a total accuracy of 38.4%.Matrix delineates distribution of actual compared
with predicted class membership for multiclass cancer prediction on the GCM dataset.

doi:10.1371/journal.pone.0138814.g005

Fig 6. Confusion matrix of prediction results using LDS, which achieves a total accuracy of 60.1%.Matrix delineates distribution of actual compared
with predicted class membership for multiclass cancer prediction on the GCM dataset.

doi:10.1371/journal.pone.0138814.g006
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Acute Leukemia Dataset
We also conduct a cancer classification experiment to verify the classification performance of
Semi-PNMF compared with low density separation (LDS, [14]), transductive SVM (TSVM,
[16]), constrained NMF (CNMF, [24]), and soft-constrained NMF (SCNMF, [25]) on another
popular dataset, i.e., the Acute Leukemia dataset [36]. This dataset comes from Gene

Fig 7. Confusion matrix of prediction results using TSVM, which achieves a total accuracy of 48.99%.Matrix delineates distribution of actual
compared with predicted class membership for multiclass cancer prediction on the GCM dataset.

doi:10.1371/journal.pone.0138814.g007

Table 2. Sensitivity and Specificity of the comparedmethods over 14 cancer subtypes on the GCM dataset.

Sensitivity Specificity

CNMF SCNMF TSVM LDS Semi-PNMF CNMF SCNMF TSVM LDS Semi-PNMF

BR 0 0.42 0 0.42 0.42 0.98 0.89 0.94 0.95 0.96

PR 0.36 0.5 0.57 0.57 0.5 0.95 1 0.98 0.99 0.98

LU 0.25 0.17 0.58 0.58 0.42 0.97 0.99 0.97 0.97 0.99

CO 0.33 0.17 0.58 0.67 0.25 0.98 0.98 0.98 0.95 0.99

LY 0.55 0.77 0.14 0.82 0.95 0.9 0.99 0.95 0.97 0.99

BL 0 0.91 0.73 0.73 0.64 0.99 0.67 0.98 0.91 0.97

ML 0.3 0.6 0.7 0.7 0.9 0.98 0.96 0.98 0.97 1

UT 0.7 0.4 0.4 0.5 0.9 0.79 0.98 0.95 0.97 0.94

LE 0.7 0.6 0.53 0.93 0.97 0.95 1 0.92 1 1

RE 0.27 0.09 0.73 0.18 0.73 0.99 1 0.98 0.99 0.91

PA 0.09 0.73 0.55 0 0.55 0.95 0.99 0.91 0.98 0.99

OV 0.33 0.17 1 0.083 0.08 0.95 0.99 0.96 0.98 0.99

MS 0.36 0.73 0.27 0.55 0.91 1 1 0.96 0.96 0.99

CNS 0.45 0.35 0.4 0.8 1 0.92 1 0.98 0.97 0.98

Avg. 0.34 0.47 0.51 0.538 0.66 0.95 0.96 0.96 0.97 0.98

doi:10.1371/journal.pone.0138814.t002
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Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13159), and
can also be downloaded from the website: https://zenodo.org/record/21712. We replace the
unavailable entries of this dataset with the average values of their k-nearest neighbor elements.
This dataset consists of 2,096 samples along with 54,675 probes in total. This dataset contains
different cancer subtypes of the acute leukemia and thus is not suited for cancer classification
in contrast with the GCM dataset. Table 3 gives a brief description of this dataset. Then, we
feed this dataset to all the compared methods.

For Semi-PNMF, we set two parameters α = 0.2, and β = 0.01. For the traditional semi-
supervised learning methods, we adopt the same configurations as the above subsection. The
cross-validation process of the above subsection is repeatedly conducted to evaluate the com-
pared methods on this dataset. As shown in Figs 9 to 13, the confusion matrix of the predicted
results of Semi-PNMF, CNMF, SCNMF, LDS and TSVM are reported in detail. Each column
denotes how many unlabeled samples are assigned to each cancer subtype, while each row sig-
nifies the number of unlabeled samples affiliated to the real tumor subtype. Each color not only
represents a specific cancer subtype but also highlights the correct prediction results, i.e., the
diagonal elements of the confusion matrix.

Figs 9 to 13 imply that Semi-PNMF can identify different tumor types more accurately than
the representative methods. Semi-PNMF achieves the highest total classification accuracy

Fig 8. Average accuracies versus different numbers (1–6) of the labeled samples for each class of the GCM dataset.

doi:10.1371/journal.pone.0138814.g008
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compared with CNMF, SCNMF, TSVM and LDS in terms of the prediction results in the con-
fusion matrix. Moreover, Table 4 also indicates that Semi-PNMF consistently outperforms the
compared methods on eighteen cancer subtypes in terms of both sensitivity and specificity. In
summary, these results suggest the effectiveness of Semi-PNMF in cancer classification.

The number of the labeled samples is an important factor affecting the performance of
semi-supervised learning methods. Hence, it is very necessary to observe the classification
accuracy of Semi-PNMF under different numbers (1–6) of labeled samples in each class. Here,
we randomly select different numbers of examples from each class as labeled examples and
regard the rest as unlabeled. Then, we independently conduct 10 individual experiment trails
to remove the effect of randomness.

Fig 14 compares the average accuracy of CNMF, SCNMF, TSVM, LDS, and Semi-PNMF
under different numbers of labeled samples for each class. It also shows that Semi-PNMF
achieves the highest accuracy and has an increasing tendency with the rise in the number of
labeled samples.

Discussion
This paper proposes the semi-supervised PNMF method (Semi-PNMF), which incorporates
two types of constraints as well as the auxiliary basis to boost PNMF. Particularly, Semi-PNMF
utilizes the linear combination of examples to approximate the cluster centroids such that the
cluster centroids have more powerful representative ability. To effectively indicate the classes
of unlabeled samples, Semi-PNMF enforces the coefficients of labeled samples to approach

Table 3. Description of the Acute Leukemia dataset.

Cancer Types Number of Samples

Mature B-ALL with t(8;14) 13

Pro-B-ALL with t(11q23)/MLL 70

c-ALL/pre-B-ALL with t(9;22) 122

T-ALL 174

ALL with t(12;21) 58

ALL with t(1;19) 36

ALL with hyperdiploid karyotype 40

c-ALL/pre-B-ALL without t(9;22) 237

AML with t(8;21) 40

AML with t(15;17) 37

AML with inv(16)/t(16;16) 28

AML with t(11q23)/MLL 38

AML with normal karyotype+other abnormalities 351

AML complex aberrant karyotype 48

CLL 448

CML 76

MDS 206

Non-leukemia and healthy bone marrow 74

Total 2,096

Abbreviations: B-ALL, B-cell acute lymphoblastic leukemia; MLL, myeloid/lymphoid or mixed-lineage

leukemia; pre, precursor; c-ALL, childhood acute lymphoblastic leukemia; T-ALL, T-cell acute lymphoblastic

leukemia; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic

leukemia; CML, chronic myelogenous leukemia; MDS, myelodysplastic syndrome.

doi:10.1371/journal.pone.0138814.t003
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Fig 9. Confusion matrix of prediction results using Semi-PNMF, which achieves a total accuracy of 73.43%.Matrix delineates distribution of actual
compared with predicted class membership for multiclass cancer prediction on the Acute Leukemia dataset.

doi:10.1371/journal.pone.0138814.g009

Fig 10. Confusionmatrix of prediction results using SCNMF, which achieves a total accuracy of 69.47%.Matrix delineates distribution of actual
compared with predicted class membership for multiclass cancer prediction on the Acute Leukemia dataset.

doi:10.1371/journal.pone.0138814.g010
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Fig 11. Confusionmatrix of prediction results using CNMF, which achieves a total accuracy of 66.41%.Matrix delineates distribution of actual
compared with predicted class membership for multiclass cancer prediction on the Acute Leukemia dataset.

doi:10.1371/journal.pone.0138814.g011

Fig 12. Confusionmatrix of prediction results using LDS, which achieves a total accuracy of 59.16%.Matrix delineates distribution of actual compared
with predicted class membership for multiclass cancer prediction on the Acute Leukemia dataset.

doi:10.1371/journal.pone.0138814.g012
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Fig 13. Confusionmatrix of prediction results using TSVM, which achieves a total accuracy of 54.72%.Matrix delineates distribution of actual
compared with predicted class membership for multiclass cancer prediction on the Acute Leukemia dataset.

doi:10.1371/journal.pone.0138814.g013

Table 4. Sensitivity and Specificity of the comparedmethods over 18 cancer subtypes on the Acute Leukemia dataset.

Sensitivity Specificity

CNMF SCNMF TSVM LDS Semi-PNMF CNMF SCNMF TSVM LDS Semi-PNMF

C1 0 0.85 1 1 0 1 1 1 1 1

C2 0.5 0.93 1 1 0.91 1 0.99 0.97 0.97 1

C3 0.52 0.84 0.38 0.45 0.79 0.98 0.98 0.99 0.99 0.99

C4 0.76 0.92 1 0.95 0.91 1 0.99 0.89 0.92 0.97

C5 0.41 0.97 0.45 0.53 0.97 0.99 0.98 0.99 0.99 0.99

C6 0.19 0.89 0 1 0.89 0.99 0.99 0.98 0.98 0.99

C7 0.18 0.93 0.43 0.75 0.8 1 0.97 0.97 0.97 0.99

C8 0.71 0.31 0.5 0.5 0.45 0.9 1 0.94 0.94 1

C9 0.38 0.9 0.25 0 0.73 0.98 0.99 0.98 0.98 1

C10 0.14 0.92 0.24 0.76 0.92 1 0.99 0.98 0.98 1

C11 0.07 1 0 0.61 0.36 1 0.98 0.98 0.98 1

C12 0.13 0.79 0.39 0.63 0.37 0.99 0.98 0.98 0.98 0.98

C13 0.7 0.22 0.28 0.3 0.53 0.93 1 0.96 0.98 1

C14 0.21 0.75 1 1 0.13 0.98 0.94 0.99 0.99 0.98

C15 0.98 0.99 0.78 0.77 1 1 0.99 1 1 0.97

C16 0.63 0.92 1 1 0.93 0.99 0.98 0.94 0.94 0.97

C17 0.86 0.57 0.37 0.37 0.9 0.92 0.97 1 1 0.89

C18 0.05 0.64 0 0 0.14 0.99 0.97 0.98 0.98 1

Avg. 0.41 0.8 0.5 0.646 0.65 0.98 0.9828 0.9733 0.9761 0.9844

Each row indicates the specific cancer sub-style corresponding to each row of Table 3.

doi:10.1371/journal.pone.0138814.t004

Semi-PNMF for Cancer Classification

PLOS ONE | DOI:10.1371/journal.pone.0138814 September 22, 2015 17 / 20



their labels, meanwhile representing the unlabeled samples using the identical cluster centroid.
To optimize Semi-PNMF, we devised the multiplicative update rule (MUR) to establish the
convergence guarantee. Experiments of cancer classification on two real-world datasets show
that Semi-PNMF outperforms the representative methods in terms of quantity.

Recently, Bayesian methods that incorporate both sparsity and a large number of covariates
in the model have been extensively used for parameter estimation and classification in data sets
compared to small sample sizes such as gene expression data [39–41]. They also improve
model accuracy by introducing a slight bias in the model [40]. In future works, we can borrow
from the merits of Bayesian methods to further improve the classification performance of
Semi-PNMF for a large-scale dataset. Semi-PNMF has provided a flexible framework for learn-
ing methods in cancer data processing and can be utilized in other applications such as cancer
recurrence [42, 43].
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