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Proteomic and clinical biomarkers for acute
mountain sickness in a longitudinal cohort
Jing Yang 1,2,3,4,8, Zhilong Jia 3,4,5,8✉, Xinyu Song 3,5, Jinlong Shi2,3, Xiaoreng Wang6, Xiaojing Zhao4,7 &

Kunlun He 1,2,3,4✉

Ascending to high-altitude by non-high-altitude natives is a well-suited model for studying

acclimatization to extreme environments. Acute mountain sickness (AMS) is frequently

experienced by visitors. The diagnosis of AMS mainly depends on a self-questionnaire,

revealing the need for reliable biomarkers for AMS. Here, we profiled 22 AMS symptom

phenotypes, 65 clinical indexes, and plasma proteomic profiles of AMS via a combination of

proximity extension assay and multiple reaction monitoring of a longitudinal cohort of 53

individuals. We quantified 1069 proteins and validated 102 proteins. Via differential analysis,

machine learning, and functional association analyses. We found and validated that RET

played an important role in the pathogenesis of AMS. With high-accuracies (AUCs > 0.9) of

XGBoost-based models, we prioritized ADAM15, PHGDH, and TRAF2 as protective, pre-

dictive, and diagnostic biomarkers, respectively. Our findings shed light on the precision

medicine for AMS and the understanding of acclimatization to high-altitude environments.
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Acclimatization and environmental adaptation play
important roles in human activity and survival. High-
altitude is a typical extreme environment, providing a

well-suited model for studying acclimatization. Millions of people
travel or operate in high-altitude areas every year. People tra-
veling to high-altitude regions have an increased risk of devel-
oping high-altitude illness, such as acute mountain sickness
(AMS)1, high-altitude pulmonary edema (HAPE)2, and chronic
mountain sickness (CMS)3. The capacity for acclimatization to
the high-altitude varies for different individuals.

AMS, one of the most common high-altitude illnesses, occurs
when individuals living at low altitudes ascend to high altitudes
(above 2500 m)2. The diagnosis of AMS depends on
questionnaire-based diagnostic instruments, among which the
Lake Louise Acute Mountain Sickness Score (LLS) is widely
used4. The typical symptoms of AMS are headache, gastro-
intestinal symptoms (poor appetite, nausea, and/or vomiting),
dizziness, and fatigue. Without effective treatment, AMS may
progress to life-threatening high-altitude cerebral edema or
HAPE2. The incidence of AMS varies from 25 to 94%, affected by
multi-factors, such as anxiety5,6, altitude attained2, rate of ascent7,
individual susceptibility8, and preacclimatization9. Moreover, the
lack of reliable diagnostic criteria makes AMS complicated.

The pathogenesis of AMS remains unclear and is under debate.
Several hypotheses have been proposed for the pathophysiological
mechanism of AMS, such as the induction of vasogenic and/or
intracellular cerebral edema10–12, increases in vascular perme-
ability due to higher levels of oxidative stress13 and
inflammation11, increases in vascular endothelial growth factor
levels induced by hypoxia-inducible transcription factors14, and
metabolic demand15,16. Because these pathophysiological
mechanisms cannot completely characterize AMS, it is difficult to
identify biomarkers according to these methods.

The proteome is suitable for exploring the pathogenesis and
discovering biomarkers of AMS. Previous studies on the pro-
teome of AMS mainly used enzyme-linked immunosorbent assay,
gel electrophoresis and mass spectrometry (MS) technology17–22.
Notably, the gel electrophoresis-based method has several draw-
backs, such as quantitative reproducibility and a biased proteome
profile23. Julian et al.18 found that the abundance of antioxidant
proteins was higher in patients with AMS but not in individuals
with resistance to AMS using a 20-volunteer cohort. By
employing isobaric tags for relative and absolute quantitation MS,
Lu et al.15 revealed that proteins related to the tricarboxylic acid
cycle (for example, pyruvate dehydrogenase E1 subunit alpha 1
(PDHA1), succinate dehydrogenase complex flavoprotein subunit
A (SDHA), and succinate-CoA ligase GDP/ADP-forming subunit
alpha (SUCLG1)), glycolysis (such as fructose-bisphosphatase 1
(FBP1), aldolase, fructose-bisphosphate A (ALDOA), and phos-
phoglycerate kinase 1 (PGK1)), the ribosome, and the proteasome
(for example, proteasome 26S subunit, ATPase 3 (PSMC3)) were
significantly suppressed in the AMS-resistant group compared
with their levels in the AMS-susceptible group. The levels of anti-
inflammatory and/or anti-permeability factors, such as inter-
leukin 1 receptor antagonist (IL-1RA), heat shock protein-70
(HSP-70), and adrenomedullin, are higher in AMS-resistant
subjects than in AMS-susceptible subjects, whereas the levels of
the chemotactic factors C-C motif chemokine ligand 2 (CCL2)
and tumor necrosis factor alpha (TNF-α) are independent of the
AMS status11. Kevin et al.24 found that Angiopoietin-like 4
(ANGPTL4) and resistin were increased at a high altitude in AMS
patients. However, the findings obtained in most of these studies
were not validated. Padhy et al.20 observed a lower abundance of
angiotensinogen and angiotensin II in high-altitude natives by
matrix-assisted laser desorption/ionization-time of flight/time of
flight (MALDI_TOF/TOF). Moreover, studying the proteome of

high-altitude natives could also shed light on AMS in non-high-
altitude natives. Du et al.25 performed a tandem mass tag-label-
based (TMT-label-based) plasma proteomic analysis and found
that C-C motif chemokine ligand 2 (CCL18), complement C9
(C9), and S100 calcium binding protein A9 (S100A9) were
upregulated and that histidine rich glycoprotein (HRG) and
coagulation factor XI (F11) were downregulated in high-altitude
natives compared with non-high-altitude natives at high altitude.
Accordingly, a systematic study of the pathogenesis, candidate
therapeutic targets, and protective, predictive and diagnostic
biomarkers of AMS using a larger cohort and new advanced
proteome technology is needed.

Proximity extension assay (PEA) technology uses antigen-
antibody binding and quantitative real-time polymerase chain
reaction (qPCR) technology to perform qualitative and quantitative
analysis of proteins and has been widely used for the study of several
diseases, such as COVID-1926,27 and cardiovascular disease28,29. The
Olink panels cover biomarkers of crucial diseases and proteins of
important biological processes involving different systems, allowing
us to profile thousands of proteins using only a small volume of
plasma. Moreover, multiple reaction monitoring (MRM) is an MS-
based method targeting selective peptides for protein detection and
quantitation with good reproducibility and sensitivity. MRM tech-
nology is suitable for the validation of candidate biomarkers. The
combination of antibody-based PEA and MS-based MRM tech-
nologies will largely eliminate false-negative signals. Therefore, we
applied both PEA and MRM technologies in our study to obtain
reliable and robust results.

In this study, we systematically explored AMS using the pro-
teomes, 65 clinical indexes, and 20 AMS symptom phenotypes of
106 plasma samples from a Chinese Han cohort consisting of 53
participants (Fig. 1a). We characterized the protein profile of 10
participants with AMS at low and high altitudes using Olink’s
PEA technology (Fig. 1b) and validated 102 key proteins using
MRM proteomics technology with expanded samples and groups
(Fig. 1c). Moreover, we identified candidate pathogenesis-related
proteins and protective, predictive, and diagnostic biomarkers of
AMS via statistical analysis and a machine learning-based model
(Fig. 1d). In addition, we associated these proteins with pathways,
AMS symptom phenotypes, and clinical indexes to dissect the
function of these proteins in AMS with the aim of redefining AMS
with proteins and clinical indexes (Fig. 1e). Our study illuminates
potentially important pathogenesis-related proteins, robust ther-
apeutic targets, and predictive and diagnostic biomarkers of AMS
with the aim of promoting an improved understanding and
redefinition of AMS and high-altitude acclimatization.

Results
Study design for exploring AMS. We recruited a cohort of 53
individuals and collected 106 plasma samples (53 pairs) from the
participants living at low and at high altitude for 1–4 days. All the
participants completed a questionnaire within 12–24 h of arrival at
high altitude, which included 22 AMS symptom phenotypes (Sup-
plementary Data 1), when they were at high altitude prior to blood
collection. Among the tested symptom phenotypes, headache and 5
other symptom phenotypes were used to calculate the Louise Lake
Acute Mountain Sickness Score (see Methods). Among the 53 sub-
jects, 30 subjects (57%) were diagnosed as AMS. To perform com-
prehensive proteomic profiling of AMS, we identified and quantified
1069 proteins in 20 plasma samples of AMS subjects using PEA
technology at the discovery stage and 102 proteins in 106 plasma
samples using MRM technology at the validation stage. The dis-
covery stage included two groups from a cohort with ten individuals
with AMS: individuals with AMS at high-altitude (AMS4k) and the
same individuals at low-altitude (AMS1k). The validation stage
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included four groups from a cohort with 30 individuals with AMS
and 23 individuals without AMS: individuals with AMS at high-
altitude (AMS4k), the same individuals at low-altitude (AMS1k),
individuals without AMS at high-altitude (nAMS4k), and the same
individuals at low-altitude (nAMS1k). We defined “pathogenesis” as
a comparison between individuals with AMS at high-altitude (4k)
and low-altitude (1k) in our nature-interventional study. The pro-
teomic signature observed in individuals with AMS at 4k relative to
the same individuals at 1k could be used to describe the pathogenesis
of the AMS disease. We defined “protection” as a comparison
between individuals without AMS at 4k and 1k in our nature-
interventional study. The proteomic signature observed in indivi-
duals without AMS at 4k relative to the same individuals at 1k could
be used to describe protection from AMS disease. We defined
“prediction” as a comparison between individuals with AMS at 1k
and individuals without AMS at 1k in our nature-interventional
study. The proteomic signature observed in individuals with AMS
vs. individuals without AMS at 1k (before the intervention) could be
used to describe the prediction of AMS disease. We defined “diag-
nosis” as a comparison between individuals with AMS at 4k and
individuals without AMS at 4k in our nature-interventional study.

The proteomic signature observed in individuals with AMS vs.
individuals without AMS at 4k (once the change in altitude had
already been conducted) could be used to describe the diagnosis of
AMS disease.

PEA-based identification of proteins involved in AMS at the
discovery stage. At the discovery stage, we measured 21,600
measurements, consisting of 1069 proteins per subject per con-
dition in ten subjects (10 AMS) and two conditions (1k and 4k),
and 22 AMS phenotypes in ten subjects and one condition (4k),
to explore the pathogenesis and therapeutic targets of AMS using
12 PEA panels (Supplementary Data 2). The average age and LLS
score at high altitude were 18.8 and 5.2, respectively. Strict quality
control identified 887 proteins (see Methods). Based on a q
value < 0.05, we identified 47 differentially expressed proteins
(DEPs), which included 40 upregulated and 7 downregulated
proteins (Fig. 2a and Supplementary Data 3). ANGPTL4, matrix
metallopeptidase 3 (MMP3), and fibroblast growth factor 23
(FGF23) were upregulated in AMS4k, whereas carbonic anhy-
drase 1 (CA1), carbonic anhydrase 2 (CA2), and the chemokine
CCL2 were downregulated (Fig. 2a).
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The DEPs were sufficiently powered to clearly distinguish the
AMS1k and AMS4k groups. Principal component analysis (PCA)
showed that these proteins clearly distinguished the AMS4k
group from the AMS1k group, and the first principal component
accounted for 42.18% of the variance (Fig. 2b). A clustering
analysis also showed a clear separation between the two groups
(Fig. 2c). Accordingly, we considered the 47 DEPs to be a primary
clue for exploring the therapeutic targets of and protective,
predictive, and diagnostic biomarkers for AMS.

Identification of biological functions involved in AMS at the
discovery stage. By performing a functional enrichment analysis
of the upregulated and downregulated proteins, we identified
pathways and Gene Ontology (GO) terms related to AMS. Energy
metabolism pathways, such as nitrogen metabolism, the pentose
phosphate pathway, and glycolysis/gluconeogenesis, were sig-
nificantly downregulated in cluster 2, whereas cytokine–cytokine
receptor interaction and TNF signaling pathways were sig-
nificantly upregulated in cluster 1 (Fig. 2c, Supplementary Data 4).
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The GO enrichment analysis revealed that cell growth and
response to stimuli, such as hypoxia and cAMP, were upregulated
in cluster 1 (Supplementary Fig. 1), whereas bicarbonate transport,
monocyte chemotaxis, and monosaccharide catabolic processes
were downregulated in cluster 2 (Supplementary Fig. 1).

Carbonic anhydrase (CA) family proteins, including CA1,
CA2, and carbonic anhydrase 6 (CA6), are actively involved in
AMS via the carbonate dehydratase process of the nitrogen
metabolism pathway. In total, three types of cytokines, namely,
the IL6 receptor family (LEPR), IL-1 receptor family (IL18R1),
and TGF-β family (growth differentiation factor 15 (GDF15) and
inhibin beta C subunit (INHBC)), which are involved in the
cytokine–cytokine receptor interaction pathway, were upregu-
lated. The results also revealed the upregulation of IL18R1,
selectin E (SELE), and MMP3, which are involved in the TNF
signaling pathway. These findings indicate that immunological
and inflammatory responses and energy metabolism are actively
involved in the pathogenesis of AMS.

Validation via multiple reaction monitoring. To confirm the
association between PEA-identified DEPs and AMS, we validated
102 proteins in 106 samples and 4 groups (AMS1k, AMS4k,
nAMS1k, and nAMS4k) using an MRM MS-based proteome
platform. No significant differences in age, height, or weight were
found between the individuals with and without AMS, whereas
the LLS scores at high altitude were significantly lower in the
individuals without AMS than in the individuals with AMS
(0.696 ± 0.703 vs. 4.3 ± 1.49, p value < 0.001) (Table 1). We
extended the 47 proteins to 102 proteins by adding 55 proteins
involved in several pathways, such as the pentose phosphate and
glycolysis pathways. Finally, we profiled 102 proteins (538 frag-
ment ions) in 53 paired plasma samples (30 AMS4k, 30 AMS1k,
23 nAMS4k, and 23 nAMS1k) from 53 male Chinese Han sub-
jects using MRM technology (Supplementary Fig. 2). The com-
parisons between the AMS4k and AMS1k, nAMS4k and
nAMS1k, AMS1k and nAMS1k, and AMS4k and nAMS4k groups
could be used to illustrate the pathogenesis, protection, predic-
tion, and diagnosis of AMS, respectively (Fig. 1d).

Key proteins involved in the pathogenesis of AMS. The com-
parison between the AMS4k and AMS1k groups could be used to
identify AMS pathogenesis-related proteins. We confirmed that
23 out of 47 proteins (49%) exhibited changing trends that were
consistent with those found for the PEA-identified DEPs (Sup-
plementary Data 3, Supplementary Fig. 3). Among these proteins,
matrilin 3 (MATN3), myocilin (MYOC), ret proto-oncogene

(RET), and S100 calcium binding protein A12 (S100A12) were
significantly different (Fig. 3a, Supplementary Fig. 4a, b), which
validates their potential involvement in the response to AMS.
Myocilin, which is encoded by MYOC, is involved in cytoskeletal
function30. MATN3 promotes the expression of HIF-1α31, the
main factor in HIF-1α pathway, in response to hypoxia and
inflammation32,33. S100A12 is a calcium-, zinc- and copper-
binding protein that plays a prominent role in the regulation of
inflammatory processes and the immune response34. RET, a
transmembrane receptor and member of the tyrosine-protein
kinase family of proteins, plays a role in cell differentiation,
growth, migration, and survival. Notably, RET showed an
opposite changing trend between nAMS4k and nAMS1k,
although this difference was not statistically significant (Fig. 3a).
In addition, the HIF-1 signaling pathway, glycolysis/gluconeo-
genesis, and carbon metabolism were enriched in DEPs identified
by MRM (Supplementary Fig. 5a and Supplementary Data 4).
The HIF-1 signaling pathway is associated with AMS35.

Protective proteins for AMS. The comparison between the
nAMS4k and nAMS1k groups could be used to explore protective
proteins and could shed light on the pathophysiological
mechanism and prevention of AMS. We identified 29 protective
DEPs between the nAMS4k and nAMS1k groups (Supplementary
Data 3). Overall, the trends obtained for ADAM metallopeptidase
domain 15 (ADAM15), CD38 molecule (CD38), cystatin E/M
(CST6), KIT ligand (KITLG), and thrombomodulin (THBD)
between these two groups were the opposite of those obtained for
these proteins between the AMS4k and AMS1k groups, as
revealed by both PEA and MRM (Fig. 3a, Supplementary Fig. 4c,
d), which indicates their potential protective role in preventing
AMS and rapid acclimation to high altitude. Among these pro-
teins, ADAM15 exhibited the highest degree of downregulation.
In addition, the downregulated proteins CD38 and KITLG are
involved in the hematopoietic cell lineage (Supplementary Fig. 5b
and Supplementary Data 4), and KITLG is induced by HIF-1α
under hypoxia in cancer cells36 and plays a role in hematopoiesis
and cell migration.

Predictive biomarkers of AMS. Predicting the occurrence of
AMS at high altitudes is difficult but has great value for individuals
living at low altitude. The comparison between the AMS1k and
nAMS1k groups could identify predictive biomarkers. We identi-
fied 23 DEPs between the AMS1k and nAMS1k groups (Supple-
mentary Data 3), and 17 of these DEPs showed the same trend as
that obtained between the AMS4k and nAMS4k groups, showing
the robustness of these proteins (Fig. 3a, Supplementary Fig. 6a).
Filtering based on an absolute value of log2FC larger than 0.5
resulted in 6 upregulated proteins: phosphoenolpyruvate carbox-
ykinase 1 (PCK1), phosphoglycerate dehydrogenase (PHGDH),
ribokinase (RBKS), S100A12, solute carrier family 4 member 1
(SLC4A1), and secreted protein acidic and cysteine rich (SPARC).
Among these DEPs, PCK137, and RBKS38,39 are involved in the
metabolism of carbohydrates. These results indicate that these
proteins are candidate predictive biomarkers of AMS.

Diagnostic biomarkers of AMS. The comparison between the
AMS4k and nAMS4k groups could be used to discover diagnostic
biomarkers of AMS. We identified 28 DEPs between the AMS4k
and nAMS4k groups (Supplementary Data 3). After filtering
based on an absolute value of log2FC larger than 0.5, 10 upre-
gulated proteins (ADP ribosylation factor 6 (ARF6), Epstein-Barr
virus induced 3 (EBI3), GC vitamin D binding protein (GC),
immunoglobulin superfamily containing leucine rich repeat 2
(ISLR2), MYOC, neuropilin 2 (NRP2), RBKS, RET, TNF

Table 1 Baseline characteristics of the 53 subjects.

nAMS (n= 23) AMS (n= 30) p value

Sex
Male 23 (100%) 30 (100%) NA
Female 0 (0%) 0 (0%)

Age (years)
Mean (SD) 19.0 (1.30) 19.3 (1.23) 0.528
Median [min, max] 19.0 [17.0, 22.0] 19.0 [17.0, 22.0]

Height (cm)
Mean (SD) 171 (4.70) 173 (5.47) 0.157
Median [min, max] 170 [162, 180] 173 [165, 185]

Weight (kg)
Mean (SD) 63.1 (5.05) 65.9 (7.00) 0.0996
Median [min, max] 62.0 [54.0, 72.0] 66.0 [53.0, 84.0]

LLS
Mean (SD) 0.696 (0.703) 4.3 (1.49) <0.001
Median [min, max] 1 [0, 2] 4 [3, 9]
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Fig. 3 Differential analysis and classification with MRM-identified DEPs and clinical indexes. Differential analysis and machine learning were performed
with the identified proteins and clinical indexes in four comparison groups (pathogenesis: AMS4k (n= 30) and AMS1k (n= 30); protection: nAMS4k
(n= 23) and nAMS1k (n= 23); prediction: AMS1k (n= 30) and nAMS1k (n= 23); and diagnosis: AMS4k (n= 30) and nAMS4k (n= 23). a Heatmap of
the log2FC of 75 PEA- or MRM-identified DEPs in the 5 comparison groups based on PEA or MRM. b Heatmap of the log2FC of 37 differential clinical
indexes involved in the 4 comparison groups. The heatmap depicts the regulation trends of each protein or clinical index with the legend at the left of the
figure. The statistical methods were used paired/unpaired t test or Welch’s t test. The differentially expressed proteins and clinical indexes are labeled with
* (q value < 0.05) and +(p value < 0.05). c ROCs of the classification models with proteins (orange curve), clinical indexes (blue curve), or combined data
(yellow curve) and bar plot of important proteins (orange bar) between AMS4k and AMS1k (pathogenesis, pink box). All the pathogenesis models with
three types of features exhibited high accuracy with statistical significance, as demonstrated by the AUCs and p values. d ROCs of the classification models
with proteins (orange curve), clinical indexes (blue curve), or combined data (yellow curve) and bar plot of important proteins (orange bar) between the
nAMS4k and nAMS1k groups (protection, dark blue box). All protection models with three types of features show high accuracy with statistical
significance. e ROCs of the classification models with proteins (orange curve), clinical indexes (blue curve), or combined data (yellow curve) and bar plot of
important proteins (orange bar) between the AMS1k and nAMS1k groups (prediction, dark green box). The prediction models with proteins and combined
data show high accuracy. f ROCs of the classification models with proteins (orange curve), clinical indexes (blue curve), or combined data (yellow curve)
and bar plot of important proteins (orange bar) between the AMS4k and nAMS4k groups (diagnosis, yellow box). The diagnosis models with proteins and
combined data exhibit high accuracy with statistical significance. The p value (in parentheses) of each AUC is shown after the AUC value. ROC receiver
operating characteristic curve, AUC area under the curve.
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receptor-associated factor 2 (TRAF2), and WAP, follistatin/kazal,
immunoglobulin, kunitz and netrin domain containing 1
(WFIKKN1)) remained (Fig. 3a, Supplementary Data 3, Supple-
mentary Fig. 6b). Among these proteins, EBI3, RET, and
WFIKKN1 showed opposite regulation trends compared with
those obtained from the comparison between the AMS1k and
nAMS1k groups (Fig. 3a), which shows their higher likelihood of
being diagnostic biomarkers. Notably, RET exhibited the same
significant regulation trends between the AMS4k and AMS1k
groups, indicating its active role in the pathogenesis of AMS.
ISLR2 is involved in axon guidance in brain development, and
ISLR2 deficiency leads to severe hydrocephalus in mice40. ISLR2
also shows a genetic interaction with RET41.

High AMS classification accuracy. Four tree-based XGBoost
machine-learning models showed good performance in distin-
guishing AMS4k from AMS1k, nAMS4k from nAMS1k, AMS4k
from nAMS4k, and AMS1k from nAMS1k. We used 10-fold
cross-validation and the DEPs measured by MRM assays to
enhance the robustness and performance of the models. The area
under the curve (AUC) of the pathogenesis model with a panel of
7 proteins (RET, ISLR2, MATN3, scavenger receptor class A
member 5 (SCARA5), CA2, MYOC, and S100A12) to distinguish
AMS1k and AMS4k was 0.90 (p value < 0.001, Fig. 3c). Notably,
RET, MYOC, MATN3, and S100A12 were also candidate
pathogenesis-related proteins according to differential abundance
analysis (Fig. 3a). MYOC, a type of secreted glycoprotein that
participates in cell adhesion, cell-matrix adhesion, cytoskeleton
organization, and cell migration, was reported to be reduced after
incubation under hypoxia in trabecular meshwork cells and
astrocytes42.

The AUC of the protection model with 5 proteins (ISLR2,
MYOC, WFIKKN1, SCARA5, and ADAM15) that distinguished
nAMS1k and nAMS4k was 0.95 (p value < 0.001, Fig. 3d), which
indicated that these proteins may be involved in attenuating the
symptoms of AMS in individuals without AMS at high altitudes.
The protein-level responses of individuals with and without AMS
to high altitude were notably different. Notably, ADAM15 was
identified as an essential candidate protective protein in the
differential abundance analysis (Fig. 3a) and could therefore be a
target for preventing and treating AMS.

The AUC of the prediction model distinguishing AMS1k and
nAMS1k with 8 proteins (PHGDH, ubiquitin like modifier
activating enzyme 1 (UBA1), RBKS, G protein subunit alpha 13
(GNA13), insulin like growth factor binding protein 7 (IGFBP7),
ficolin 2 (FCN2), CA2, and V-set and immunoglobulin domain
containing 4 (VSIG4)) was 0.91 (p value= 0.001, Fig. 3e).
PHGDH and RBKS were also identified as candidate predictive
biomarkers via differential abundance analysis, which suggested
that these proteins are likely predictive biomarkers to evaluate the
occurrence of AMS in individuals before their ascension to high
altitude. In particular, PHGDH, which is involved in glucose/
energy metabolism, had a fourfold higher weight than other
proteins in the model.

The AUC of the diagnosis model distinguishing AMS4k and
nAMS4k with 13 proteins (TRAF2, angiotensinogen (AGT),
IL18R1, Thy-1 cell surface antigen (THY1), ISLR2, transcobala-
min 2 (TCN2), CD38, G protein subunit alpha 14 (GNA14),
INHBC, GC, RBKS, WFIKKN1, and ARF6) was 0.89 (p
value < 0.01, Fig. 3f), which indicated the potential translational
value of these proteins as diagnostic biomarkers of AMS. TRAF2,
AGT, and IL18R1 were the top 3 weighted proteins in this model.
TRAF2, GC, and WFIKKN1 were also identified as candidate
diagnostic biomarkers via differential analysis. TRAF2, a TNF
receptor-associated factor, is associated with signal transduction

from members of the TNF receptor superfamily and apoptosis43.
AGT, which is expressed in the liver, is involved in the
maintenance of blood pressure, body fluid, and electrolyte
homeostasis. IL18R1 is the receptor of the proinflammatory
cytokine IL18. GC, a transporter of plasma metabolites binding to
vitamin D, is reduced under hypoxia44, which is consistent with
our result that GC was downregulated in both individuals with
AMS and individuals without AMS after ascending to high
altitude.

Accordingly, we built robust models that distinguished these
groups well and provided a panel of candidate biomarkers with
promising translational value for each scenario.

Key clinical indexes of AMS. The identification of key clinical
indexes affected by AMS could shed light on our understanding
and redefinition of AMS. Overall, 18 clinical indexes, such as
antibodies to thyroid peroxidase (A-TPO), albumin, complement
C3c (C3C), free triiodothyronine (FT3), and lipase (Supplemen-
tary Fig. 7a, b), showed significant differences between the
AMS4k and AMS1k groups and between the nAMS4k and
nAMS1k groups (Fig. 3b, Supplementary Data 5). Among these
indexes, lipase, a-Amylase EPS pancreatic (AMY-P), and carbo-
hydrate antigen 19-9 (CA199) were downregulated (Supplemen-
tary Fig. 8a). In addition, C-peptide, creatine kinase-MB (CKMB),
estradiol-E2 (E2), phosphate, progastrin-releasing peptide
(proGRP), procalcitonin, thyroglobulin, and thyroxine showed
significant differences between the AMS4k and AMS1k groups
but not between the nAMS4k and nAMS1k groups, which reveals
that these clinical indexes are affected by AMS (Fig. 3b). Bilirubin
total DPD (BILT), cancer antigen 125 (CA125), ferritin, follicle-
stimulating hormone (FSH), low-density lipoprotein (LDL), and
prolactin showed significant differences between the nAMS4k
and nAMS1k groups but not between the AMS4k and AMS1k
groups (Fig. 3b, Supplementary Fig. 7b, Supplementary Data 5).
Notably, BILT was upregulated in individuals who stayed at a
high altitude for 1 month45. C3C, FT3, and total procollagen type
1 amino-terminal propeptide (TP1NP) show significant differ-
ences between the Han and Tibetan populations46.

BILT, glucose, N-terminal pro B-type natriuretic peptide
(proBNP), and thyrotropin were found to show significant
differences between the AMS1k and nAMS1k groups (Supple-
mentary Figs. 7c, 8c). TP1NP was significantly downregulated in
the AMS4k group compared with the nAMS4k group, whereas C-
peptide, carcinoembryonic antigen (CEA), γ-glutamyltransferase
(GGT), insulin, and procalcitonin were significantly upregulated
(Supplementary Figs. 7d, 8d). In addition, C-peptide, CEA, GGT,
and procalcitonin were also significantly upregulated in the
AMS4k group compared with the AMS1k group (Fig. 3b). The
same trends between the two comparisons indicated the
potentially remarkable roles of C-peptide, CEA, GGT, and
procalcitonin in the pathogenesis of AMS. Procalcitonin is an
inflammatory biomarker that is found at extremely low levels in
the periphery of healthy individuals but is increased by
inflammatory mediators47, which suggests the probable role of
inflammation in the occurrence of AMS. Collectively, the
association between AMS and multiple clinical indexes indicates
that AMS is a complex and systemic disease.

We built robust models to distinguish AMS4k from AMS1k,
nAMS4k from nAMS1k, AMS4k from nAMS4k, and AMS1k
from nAMS1k using the clinical indexes identified from each
differential analysis by 10-fold cross-validation. We found very
high classification accuracy (AUC= 0.96, p value < 0.0001) in the
pathogenesis model distinguishing AMS1k and AMS4k with 19
clinical indexes (such as A-TPO, C-peptide, phosphate, E2,
CKMB, and thyroxine; Fig. 3c, Supplementary Fig. 9a). The AUC
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of the protection model distinguishing nAMS1k and nAMS4k
with a panel of 16 clinical indexes (such as FT3, ferritin, free
Prostate-specific antigen (FPSA), creatinine, C3C, and FSH) was
0.94 (p value < 0.001, Fig. 3d, Supplementary Fig. 9a), and the
AUCs of the prediction and diagnosis models distinguishing
AMS1k and nAMS1k with 3 clinical indexes (proBNP, BILT, and
thyrotropin) and ASM4k and nAMS4k with 4 clinical indexes
(procalcitonin, TP1NP, C-peptide, and insulin) were 0.67 and 0.7,
respectively (p values > 0.05, Fig. 3e, f). It appears that clinical
indexes showed weaker performance than proteins for the
prediction and diagnosis of AMS. A-TPO, which exhibited the
highest weight in the pathogenesis comparison but not in
the protection comparison (Supplementary Fig. 9a, b), is
reportedly higher in patients with hyperemesis gravidarum than
in nonpregnant controls48, which indicates its association with
vomiting.

Models were also established using a combination of clinical
indexes and protein data to explore candidate biomarkers for
AMS. The AUCs of the pathogenesis and protection models
obtained using proteins and clinical indexes were 0.98 (p
value < 0.00001, Fig. 3c) and 0.9 (p value < 0.01, Fig. 3d) between
AMS4k and AMS1k and nAMS4k and nAMS1k, respectively.
A-TPO continued to exhibit the highest weight between the
AMS4k and AMS1k groups, whereas RET, MYOC, and MATN3
were also selected from the combined data (Supplementary
Fig. 9b). The classification performances of the pathogenesis
(Fig. 3c) and protection (Fig. 3d) models obtained with proteins
alone were comparable to those of the models obtained with the
combined data.

In the prediction and diagnosis models, the classification
performance obtained with protein alone and with the combined

data was similar. Notably, fewer features remained in the
prediction model obtained with proteins alone than in those
obtained with the combined data (Fig. 3e, f, Supplementary
Fig. 9b). In addition, all important features remaining in the
diagnosis model obtained with the combined data were proteins.
Accordingly, we hypothesized that proteins are better choices
than clinical indexes for the prediction and diagnosis of AMS.

Changes in carbohydrate metabolism between individuals with
and without AMS. Based on the dysregulation of PFKM and
RBKS identified by PEA (Fig. 3a), we extended the protein panel
used in the MRM assay to comprehensively profile energy meta-
bolism, particularly gluconeogenesis, glycolysis, and the tri-
carboxylic acid cycle (TCA cycle) (Fig. 4, Supplementary Fig. 10a).

Individuals with AMS showed higher utilization of gluconeo-
genesis than individuals without AMS at low altitude. The two
key enzymes of gluconeogenesis, glucose-6-phosphatase catalytic
subunit (G6PC) and PCK1, presented higher abundance in the
AMS1k group than in the nAMS1k group (Fig. 4 and
Supplementary Fig. 10a). Notably, G6PC is a subset of glucose-
6-phosphatase catalyzing the hydrolysis of D-glucose 6-phosphate
(G6P) to D-glucose, and PCK1 is a rate-limiting enzyme of
gluconeogenesis.

Individuals with AMS may exhibit higher utilization of
glycolysis than individuals without AMS at high altitude, and this
hypothesis is supported by the following two points. First, PFKM,
a key rate-limiting enzyme in glycolysis, was found at a higher
level in AMS4k than in nAMS4k (Fig. 4 and Supplementary
Fig. 10a), which would lead to the production of more fructose
1,6-bisphosphate and thereby the stimulation of glycolysis.
Second, individuals with AMS showed higher levels of lactate
dehydrogenase A (LDHA) and ALDOA than individuals without
AMS at high altitude. LDHA and ALDOA are involved in both
glycolysis and gluconeogenesis. However, the gluconeogenesis-
related enzymes PCK1 and G6PC showed similar expression levels
between AMS4k and nAMS4k (Supplementary Fig. 10a). There-
fore, we hypothesized that glycolysis, rather than gluconeogenesis,
was more active in the AMS4k group than in the nAMS4k group.

Individuals with AMS may have a more active TCA cycle than
individuals without AMS at low altitude and at high altitude,
although inhibition of the TCA cycle was found in both groups of
individuals after ascension to high altitude (Fig. 4). PDHA1, a
subset of pyruvate dehydrogenase, was downregulated after
ascension to high altitude in both individuals with AMS and
those without AMS. The downregulation of PDHA1 inhibited the
conversion between pyruvate and acetyl-CoA and thereby
downregulated the TCA cycle (Supplementary Fig. 10a), but the
level in individuals with AMS remained higher than that in
individuals without AMS.

Individuals without AMS had a lower utilization of glycogen
after ascension to high altitude to aid in acclimation, whereas
individuals with AMS may consume more glycogen for glycolysis
than individuals without AMS at high altitude. Both UDP-glucose
and food-derived glucose can participate in glycogen synthesis49.
Glycogen can degrade into glucose 1-phosphate (G1P). The
reversible isomerization between G1P and glucose 6-phosphate
(G6P) is catalyzed by phosphoglucomutase 1 (PGM1). PGM1
deficiency leads to a failure to utilize glycogen as an energy source
in both the liver and skeletal muscle50. In our study, PGM1
expression was lower in nAMS4k than in nAMS1k, lower in
AMS1k than in nAMS1k, and higher in AMS4k than in nAMS4k
(Supplementary Fig. 10a).

In summary, individuals with AMS may exhibit stronger
gluconeogenesis ability at low altitude and higher utilization of
glycogen and glycolysis at high altitude than individuals without
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Fig. 4 Changes in proteins involved in carbohydrate metabolism in AMS.
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(light orange background and arrows) in the following four comparison
groups are shown in the diamond shape: pathogenesis (path, pink
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metabolism was dysregulated in individuals after ascension to high altitude.
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AMS. Individuals without AMS may inhibit the utilization of
glycogen for storage after ascension to high altitude. After
ascension to high altitude, all individuals showed a decreased
TCA cycle, whereas individuals with AMS showed a more active
TCA cycle than individuals without AMS. We argue that different
carbohydrate metabolism pathways play a key role in acclimation
to high altitude.

Association among proteins, AMS symptom phenotypes, and
clinical indexes. Associating the 22 symptom phenotypes of AMS
with the changes in key proteins and clinical indexes between the
AMS4k and AMS1k groups (Fig. 5, Supplementary Data 6) could
clarify the AMS symptom phenotypes at a molecular level and better
redefine AMS using proteins and/or clinical indexes. A correlation
analysis showed that LLS was negatively correlated with S100A12,
apolipoprotein B (APOB), and cholesterol (ρs <−0.44, p value <
0.05) in the C1 cluster (Fig. 5). Furthermore, S100A12, SLC4A1,
IGFBP7, APOB, A-TPO, phosphate, and cholesterol were correlated
with multiple symptom phenotypes, such as fatigue, nausea,
vomiting, and poor appetite (C2 in Fig. 5), which indicates their
potential important roles in the development of AMS. Hypoxia
together with elevated inorganic phosphate could enhance vascular
smooth muscle cell osteogenic transdifferentiation51. SLC4A1 is
associated with CO2 gas transport in erythrocytes52.

Several AMS symptom phenotypes were correlated with
proteins but not with any clinical index (C3 in Fig. 5). For
example, headache was positively correlated with CA2 and
fibronectin 1 (FN1) (ρs > 0.42, p value < 0.05). Dizziness was
negatively correlated with S100A12 (ρ=−0.51, p value < 0.05),
and nausea was positively correlated with ISLR2 and SLC4A1

(ρs > 0.41, p value < 0.05). These results indicate opportunities for
the development of novel clinical indexes based on these proteins
to better redefine AMS.

The correlation analysis among clinical indexes, proteins, and
AMS symptom phenotypes in 53 individuals at low altitude or at
high altitude revealed that several features could contribute to the
prediction, pathogenesis, or diagnosis of AMS. No significantly
different features between AMS1k and nAMS1k were found to be
correlated with the AMS symptom phenotypes (Supplementary
Fig. 11a). However, a connection between thyrotropin and the
glucose/energy metabolism-related proteins PCK1, PHGDH, and
IGFBP7 and the phospholipid catabolism-related protein phospho-
lipase A2 group VII (PLA2G7) was found between AMS1k and
nAMS1k. The SNPs of thyrotropin and PLA2G7 are associated with
blood pressure variations and hypertension, respectively53. Moreover,
rather than clinical indexes, proteins, including FGF23, RET, IL18R1,
and GNA14, were positively correlated with AMS symptom
phenotypes, such as poor appetite, dyspnea, and lip cyanosis,
between the AMS4k and nAMS4k groups (Supplementary Fig. 11b).
In addition, C-peptide was positively correlated with 13 proteins,
such as the candidate pathogenesis-related protein MYOC (ρ= 0.42,
q value < 0.05), the protective protein KITLG (ρ= 0.27, q value <
0.05), and the diagnostic biomarker TRAF2 (ρ= 0.36, q value <
0.05). Accordingly, C-peptide may be involved in the pathogenesis of
AMS, whereas the clinical indexes investigated in our study did not
perform better than proteins in the prediction and diagnosis of AMS.

Discussion
We performed a systematic study of AMS using plasma proteome
and clinical indexes. We measured a total of 40,248
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measurements including 21,380 measurements by PEA, 10,812
measurements by MRM, 6890 measurements of clinical indexes,
and 1166 measurements of AMS symptom phenotypes. Specifi-
cally, we profiled 1069 proteins from 10 individuals with AMS at
low altitude and at high altitude using Olink’s PEA technology
and identified 47 AMS-relevant proteins. PEA technology exhi-
bits high sensitivity down to concentrations in the pg/mL range,
which allows the detection of low-abundance proteins54. We
validated 102 proteins using MS-based MRM technology in 53
individuals with or without AMS at low altitude and at high
altitude. The combination of PEA and MRM could largely avoid
false positives, increasing the quality of the candidate
biomarkers54. We then systematically analyzed the proteins and
clinical indexes that may be involved in the pathogenesis, pro-
tection, prediction, and diagnosis of AMS to identify candidate
therapeutic targets and biomarkers. We also discovered carbo-
hydrate metabolism dysregulation in individuals with AMS and
without AMS after ascension to high altitude. Moreover, we
profiled 22 AMS symptom phenotypes and 65 clinical indexes in
the same cohort and identified strong correlations among AMS-
related proteins, phenotypes, and clinical indexes, which provides
a basis for the precise redefinition of AMS using proteins and
clinical indexes.

The PEA and MRM assays confirmed that plasma RET was
significantly increased in individuals with AMS at high altitude
compared with that found in these individuals at low altitude
(Supplementary Fig. 10b). However, RET was decreased in indi-
viduals without AMS at high altitude compared with the levels
found in these individuals at low altitude (Supplementary
Fig. 10b). RET was identified as the most important variable in
the machine learning-based model, with high classifier accuracy
(panel, AUC= 0.9; single, AUC= 0.74) for the AMS4k and
AMS1k groups (Fig. 3c, Supplementary Fig. 9c).

RET is correlated with a basic symptom of AMS. RET was
previously shown to regulate the survival and size of nociceptors
that transmit information to the brain, leading to the sensation of
pain55,56. In our study, RET was positively correlated with
headache (ρ= 0.35, p value= 0.066, Supplementary Data 6). This
result suggests that RET is likely involved in the pathophysiolo-
gical mechanism of headache, a key phenotype of AMS.

RET could increase the promoter activity of CA9 induced by
HIF-1α under hypoxia57,58. CA9, which is homologous with CA1,
CA2, and CA6, could maintain the homeostasis of the blood
oxygen partial pressure and acid-base balance by regulating
ventilation under hypoxia59,60. CA2, which was also selected by
XGBoost, was identified as a candidate predictive biomarker for
AMS in our study. Acetazolamide, an inhibitor of CA2 and CA9,
is a class of drugs to prevent and treat AMS. These results suggest
that RET likely also interacts with CA2. In addition, ISLR2, which
exhibited the top weight in the machine-learning model to dis-
tinguish nAMS4k and nAMS1k, is related to RET41. Remarkably,
selective inhibitors of RET, selpercatinib and pralsetinib, were
recently approved for the treatment of RET-associated non-small-
cell lung cancer61,62. In summary, RET could be a therapeutic
target in the treatment of AMS.

In addition, proinflammatory programs are selectively activated
by TRAF2 and TNF receptor-associated factor 6 (TRAF6), which
are associated with RET/PTC oncoproteins in papillary thyroid
carcinoma63. TRAF2 was also selected by both differential analysis
and XGBoost between AMS4k and nAMS4k as a candidate
diagnostic biomarker. In addition, RET was positively correlated
with lip cyanosis, an AMS symptom phenotype. Therefore, RET
may be an essential diagnostic biomarker for AMS.

TRAF2 was selected via differential analysis and the XGBoost
classifier, with an AUC of 0.89 between AMS4k and nAMS4k, and
0.84 from single protein (Fig. 3f, Supplementary Fig. 9c). TRAF2

interacts with procaspase-12 and promotes the activation of
caspase-1264, which can transduce signals from inositol-requiring
enzyme 1 (IRE1s) under endoplasmic reticulum (ER) stress con-
ditions and lead to apoptosis65. Moreover, salidroside reportedly
reduces TRAF2 to protect against hypoxia-induced liver injury by
inhibiting ER stress-mediated apoptosis66. Accordingly, TRAF2 was
identified as a candidate diagnostic biomarker for AMS, and sali-
droside was found to be a candidate drug for the treatment of AMS.

The PEA and MRM assays confirmed that S100A12 was sig-
nificantly decreased in individuals with AMS at high altitude
compared with the levels found in these individuals at low alti-
tude (Fig. 3a). Among all the groups, the highest expression of
S100A12 was found in the AMS1k group (Supplementary
Fig. 10b). In addition, S100A12 was one of the key features in the
machine learning-based pathogenesis model, with high accuracy,
and was identified as a candidate predictive biomarker via dif-
ferential analysis between the AMS1k and nASM1k groups.
Moreover, S100A12 was negatively correlated with LLS, dizziness
and fatigue. These findings indicate that S100A12 is highly
involved in the pathogenesis of AMS.

The downregulation of S100A12 did not inhibit the inflam-
matory response induced by hypoxia. The inflammatory response
was actively involved in AMS, as shown previously. The proin-
flammatory factor S100A12, a type of endogenous innate danger
molecule, could provoke proinflammatory responses in endo-
thelial cells67. S100A12 levels are associated with increased levels
of markers of pulmonary inflammation and hypoxia in patients
undergoing cardiac surgery68. In addition, the downregulation of
S100A12 in aortic smooth muscle could reduce apoptosis69 but
had no significant effect on inflammatory signaling in
monocytes70. Therefore, it appears that the downregulation of
S100A12 likely reduces apoptosis but does not inhibit the
inflammation induced by hypoxia in individuals with AMS after
ascension to high altitude.

ADAM15 was identified as a candidate protective biomarker of
individuals without AMS and was selected by the machine learning-
based model, with high accuracy (panel, AUC= 0.95; single,
AUC= 0.80) in distinguishing nAMS1k and nAMS4k (Fig. 3d,
Supplementary Fig. 9c). ADAM15 is involved in the response to
hypoxia, proteolytic ectodomain processing of cytokines, cell
adhesion signaling, and angiogenesis in endothelial cells71,72, and it
is associated with atherosclerosis, rheumatoid arthritis, intestinal
inflammation, and inherent angiogenesis73. In addition, the silen-
cing of ADAM15 can inhibit the expression of proinflammatory
cytokines in rheumatoid angiogenesis72. Moreover, systemic
proinflammatory cytokines are associated with the development of
AMS and HAPE74,75. Proteins involved in the inflammatory
response, such as FGF23, KITLG, and plasminogen activator,
urokinase (PLAU), were found at lower levels in individuals without
AMS than in those with AMS, but CCL2 was not significant in any
of the compared groups (Supplementary Fig. 10b). This finding is
consistent with the fact that CCL2 is independent of AMS status11.
Importantly, adequate anti-inflammatory properties favor resistance
to AMS11. The candidate pathogenesis biomarker RET, which was
higher in individuals with AMS than in those without AMS, was
associated with proinflammation. In conclusion, subjects without
AMS may rapidly acclimate to a high-altitude environment by
downregulating ADAM15 and inflammation. Thus, ADAM15
could be a target in the treatment of AMS.

PHGDH, which was the top-weighted protein identified by the
XGBoost classifier, with an AUC of 0.91 between AMS1k and
nAMS1k from the panel and 0.84 from single protein, was
identified as a candidate predictive biomarker of AMS (Fig. 3d,
Supplementary Fig. 9c). PHGDH is involved in glucose and
energy metabolism. The inhibition of PHGDH could down-
regulate NADPH levels, disorder mitochondrial redox
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homeostasis, and increase apoptosis under hypoxia76,77. The
overexpression of PHGDH reduces hypoxia-induced cell death77.
Moreover, in our study, PHGDH was upregulated in individuals
without AMS and downregulated in individuals with AMS to a
similar level after ascension to high altitude (Supplementary
Fig. 10b). Collectively, the results indicate that PHGDH may be a
promising predictive biomarker for AMS.

C-peptide was selected via both differential analysis and the
classifier between the AMS4k and AMS1k and the AMS4k and
nAMS4k groups, with AUCs greater than 0.7, but not between the
nAMS4k and nAMS1k groups. C-peptide, which is a polypeptide
that connects two chains of proinsulin, was upregulated in
AMS4k compared with AMS1k and was higher in individuals
with AMS than in those without AMS at high altitude. In addi-
tion, our study showed that C-peptide was positively correlated
with proteins related to the pathogenesis, protection and diag-
nosis of AMS. Moreover, C-peptide could increase proliferation78

and activate anti-inflammation in endothelial cells79. C-peptide
was reportedly elevated in 7 subjects with AMS after ascension to
high altitude80, which is consistent with our result (Fig. 3b).
However, an acclimatization study revealed that C-peptide was
significantly decreased at 3600 m compared with sea level, but no
significant difference was found between sea level and an altitude
of 4650m and above, regardless of the AMS status81. In our
study, C-peptide showed the upregulation trend in both indivi-
duals with and without AMS at high altitude compared with the
levels found in these individuals at low altitude. Taken together,
the results show that C-peptide may be associated with the
pathogenesis and diagnosis of AMS.

Individuals with AMS may have a more active TCA cycle than
individuals without AMS in response to hypoxia and show
enhanced glycolysis and increased utilization of glycogen com-
pared with individuals without AMS at high altitude. In addition,
individuals with AMS exhibit active gluconeogenesis at low alti-
tude. Regardless of whether the individuals suffered from AMS at
high altitudes, individuals at high altitudes showed a reduced
TCA cycle due to the hypoxic environment. Based on the
downregulation of TCA-related enzymes (such as PDHA1) and
glycolysis-related enzymes (such as ALDOA) in the AMS-
resistant group, Lu et al.15 reported that the TCA cycle and gly-
colysis are reduced in individuals without AMS but not in indi-
viduals with AMS after exposure to high altitude. It appears that
the balance between glycolysis and gluconeogenesis is relevant to
AMS. These differences could aggravate the consumption of
oxygen, leading to discomfort in individuals with AMS and
comfort in individuals without AMS at high altitude. Addition-
ally, an enzyme related to glycogenesis, PCK1, was identified as a
candidate predictive biomarker for AMS in our study, and this
finding highlights the potentially important role of gluconeo-
genesis in the prediction of AMS.

We built four robust machine-learning models to dissect the
pathogenesis of AMS, screen therapeutic targets and identify
protective, predictive and diagnostic biomarkers. Using only
several proteins, these models maintained high accuracy
(AUCs ≥ 0.9), which indicates the practical value of these models.
In particular, we could screen individuals susceptible to AMS
using predictive biomarkers to largely prevent the occurrence of
AMS, which is undesirable to individuals who would like to
ascend to high altitude. The pathogenesis and protection models
obtained using clinical indexes exhibited high accuracy, whereas
the prediction and diagnosis models established using clinical
indexes did not perform as well as those obtained using proteins.
Moreover, the prediction and diagnosis models obtained using
both clinical indexes and proteins did not perform as well as
those established using only proteins, and this finding indicates
that these proteins are more suitable for the prediction and

diagnosis of AMS than these clinical indexes, which shows the
potency of the identified proteins as novel clinical indexes.

The redefinition of AMS based on proteins and clinical indexes
will promote an improved understanding and precise treatment
of AMS. Currently, the diagnosis of AMS mainly depends on the
self-questionnaire LLS. Here, we propose a panel of candidate
predictive biomarkers (such as PHGDH, UBA1, RBKS, GNA13,
IGFBP7, CA2, and VSIG4) and a panel of candidate diagnostic
biomarkers (such as TRAF2, AGT, IL18R1, ISLR2, GC, RBKS,
and WFIKKN1) for AMS. In addition, C-peptide could be an
assistant diagnostic biomarker for AMS identified via differential
analysis, the machine-learning model, and correlation analysis
with multiple AMS-relevant proteins.

In this study, we used 106 plasma samples paired from 53
individuals with robust statistical and machine learning-based
models to comprehensively profile AMS utilizing PEA and MRM-
based proteomic technology. To the best of our knowledge, this is
the largest cohort used in a study of AMS Notably, the evidence
we provide represents a combination of molecular evidence on
the mechanistic roles of these proteins, and the direct observation
of biological changes upon intervention in our longitudinal
cohort. We plan to further validate these biomarkers using
another independent cohort, covering a larger number of indi-
viduals, including women, other races, other age ranges, and
explore the association between AMS and other phenotypes, such
as psychological factors, to contribute to translational medicine.

We systematically profiled the characteristics of AMS using
two proteome technologies based on different principles, PEA
and MRM, and 106 plasma samples. We validated that RET
actively participates in the pathogenesis of AMS and is a candi-
date therapeutic target. The downregulation of ADAM15 may
play a role in preventing individuals from developing AMS.
PHGDH is a candidate predictive biomarker, and TRAF2 is a
promising diagnostic biomarker. Furthermore, we built robust
machine learning-based diagnosis, prognosis, protection, and
pathogenesis models with high classification accuracy and thereby
validated the roles of these proteins in AMS. Individuals with
AMS may exhibit more active gluconeogenesis at low altitude
than individuals without AMS and enhanced utilization of gly-
cogen compared with individuals without AMS at high altitude.
Additionally, we profiled the associations among 22 symptom
phenotypes of AMS, 65 clinical indexes, and these proteins. Our
findings shed light on redefining AMS based on proteomic and
clinical biomarkers, instead of a self-questionnaire, contributing
to precision medicine of AMS and improving our understanding
of acclimatization to extreme environments.

Methods
Subjects. A total of 53 Han Chinese male subjects (aged 18–20 years) were
recruited in this study. The exclusion criteria included having any health problems;
having any known liver, lung, or cardiovascular disease; a history of migraine or
head injury; smoking; and having been to altitudes >2500 m or exposed to a
hypobaric hypoxic environment within the last 3 months. Ethical approval was
obtained from the Chinese PLA General Hospital ethical committee with the
approval identifier S2019-035-01, and all protocols followed the established
national and institutional ethical guidelines. All participants provided signed
written informed consent.

Evaluation of the AMS status at high altitude. The AMS status of 53 subjects
was evaluated according to the LLS4, a self-reported scoring standard, after
ascension to high altitude (4300 m). Briefly, a four-point scale (asymptomatic= 0,
mild= 1, moderate= 2, severe= 3) was used to quantify the degree of headache,
gastrointestinal symptoms (poor appetite, nausea/vomiting), fatigue and dizziness
(Supplementary Data 1). Subjects with severe headache but no other symptoms of
AMS or an LLS greater than 2 were defined as individuals with AMS (AMS,
n= 30). Subjects with an LLS <3 and subjects without headaches were defined as
individuals without AMS (nAMS, n= 23). With the exception of the 7symptom
phenotypes used for calculating the LLS, 14 other AMS symptom phenotypes were
also evaluated for further analysis (Supplementary Data 1).
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Experimental setup, sample collection, and biochemical detection. All subjects
were transported to an altitude of 4300 m (4 km) from 1200 m (1 km) within 4 h by
plane. The AMS symptoms were evaluated after ascension to 4 km. Peripheral
venous whole-blood samples of 53 subjects (30 AMS and 23 nAMS) were collected
at an altitude of 1 km (AMS1k and nAMS1k) and after arrival at an altitude of 4 km
(AMS4k and nAMS4k) for 1–4 days. Blood samples were collected in a semi-
recumbent position from an anterior elbow vein by conventional venipuncture and
placed in an EDTA-coated blood collection tube. Plasma was separated by cen-
trifugation and stored in a 0.5 mL aliquot at −80 °C until analysis. All samples from
these subjects at both time points were also prepared for biochemical detection.
Two milliliters of each plasma sample was used to assay 65 clinical indexes
(Supplementary Data 1) using a hematology analyzer (cobas 6000; Roche, USA).

Twenty paired plasma samples from 10 individuals with AMS at 1 km (AMS1k)
and 4 km (AMS4k) were selected to identify the protein expression profile using
Olink’s PEA technology. Subsequently, 60 paired plasma samples from 30
individuals with AMS (including the subjects used for PEA) and 46 paired plasma
samples from 23 individuals without AMS were used for validation.

Plasma proteome profiling and analysis. We analyzed 20 plasma samples from
individuals with AMS using Olink’s PEA technology with the remaining 12
commercially available panels at that time, excluding 1 panel with overlap in most
proteins, by iCarbonX (Shenzhen) Company Limited. These panels consisted of 5
disease panels (Cardiovascular II panel, Cardiovascular III panel, Inflammation
panel, Neurology panel, and Oncology II panel) and 7 important biological pro-
gress panels (Neuro Exploratory panel, Development panel, Cardiometabolic panel,
Immune Response panel, Cell Regulation panel, Metabolism panel, and Organ
Damage panel), as indicated on the manufacturer’s website (Olink Proteomics,
Uppsala, Sweden). For each panel, each serum sample (1 µL) was added to 3 µL of
the incubation mix and incubated at 4 °C overnight (16–22 h). The extension mix
was prepared by mixing PEA enzyme and PCR reagents in nuclease-free water. A
total of 96 µL of extension mix was added to the samples and immediately
transferred to the thermal cycler, allowing a 20-min DNA extension at 50 °C,
followed by 17 cycles of DNA amplification. Further, 2.8 µL of post-PCR product
was mixed with 7.2 µL of detection mix containing PCR polymerase and real-time
PCR reagents in a new 96-well plate. The mixture and PCR primers were loaded
onto the primed microfluidic chip (96.96 Dynamic Array IFC, Fluidigm, USA),
followed by real-time PCR performed in the Biomark HD system (Fluidigm, USA)
using the program provided by Olink Biosciences. The protein concentrations were
finally normalized and transformed using internal and interplate controls to adjust
for intra- and inter-run variation82. More detailed information can be found in the
panel-specific validation data documents (www.olink.com/downloads). The
expression levels of proteins were represented as linear Normalized Protein
eXpression (NPX), a relative quantification scale in arbitrary units. A complete list
of all 1,104 measured proteins (1069 unique proteins) can be found in the Sup-
plementary Data (Supplementary Data 2).

Proteins with coefficients of variation <0.3 and a missing data frequency less
than 0.25 were used for further analysis. The values of undetected features were
replaced with 1/10 of the minimum nonzero value83. Paired two-tailed t test or
paired two-tailed Welch’s t test were performed for statistical analyses based on
homoscedasticity, and the p values were corrected using Bonferroni-Hochberg
(BH) corrections (q value) for multiple comparisons. Proteins with q values <0.05
were considered DEPs. PCA was performed using the DEPs without missing values
via the package ggplot284. The heatmap of DEPs was generated using the R package
heatmaply85 with scaled raw data.

DEP validation by multiple reaction monitoring. MRM was applied to verify the
47 selected DEPs measured by PEA and 55 other pathway-related or interest
proteins at the validation stage (Supplementary Data 2), which consisted of
106 samples (30 individuals with AMS and 23 nAMS at 1 km and 4 km, respec-
tively, involving the 10 paired samples measured by PEA) by Beijing Qinglian
Biotech Company Limited. A total of 538 transitions were selected to represent the
102 proteins. The unique peptide and transition for MRM from the peptides
identified by TripleTOF 5600+ mass spectrometry (SCIEX) in the mixed plasma
samples were selected using the Skyline software from a background database of
human species, and further screened with the transition library in SRMatlas
(https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/GetTransitions). Three
transitions were selected for each peptide, and two peptides were kept for each
protein. The MRM assay was performed using a QTRAP 6500+ mass spectrometer
(SCIEX), and the quantitative method was constructed by the Analytics module in
SCIEX OS software (version 2.0).

A total of 10 µL of plasma samples were subjected to reduction. We added
20 mM dithiothreitol (DTT) solution and incubated it at 37 °C for 1 h.
Subsequently alkylation was performed with sufficient iodoacetamide (IAM) for 1 h
at room temperature in the dark. The sample was diluted 4 times by adding a
25 mM ammonium bicarbonate (ABC) buffer. Then, trypsin
(trypsin:protein= 1:50) was added and incubated at 37 °C overnight. The next day,
50 μL of 0.1% FA was added to terminate the digestion. Finally, the samples were
all desalted with a C18 cartridge to remove the high urea, and desalted samples
were dried by vacuum centrifugation for MRM analyses.

By using BSA peptides for normalization, we obtained the standardized abundance
value (intensity) and performed relative quantitation according to grouping.
Transitions with missing value frequencies greater than 25% were removed. Further
calculations and two-tailed statistical tests were conducted using paired t test or paired
Welch’s t test for the self-control compared groups and t test or Welch’s t test for the
other compared groups in R based on homoscedasticity. The p values were corrected
using BH (q value) for multiple comparisons. Proteins with q values < 0.05 were
considered DEPs. The heatmap of the intersection of MRM-validated DEPs selected
via differential analysis in four compared groups was generated using the pheatmap
package, and the violin plot was generated using ggplot2.

Functional enrichment analysis. Gene Ontology biological process (GOBP) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the
DPEs measured by PEA and MRM were performed using the Bioconductor R
package clusterProfiler86. The redundant GO terms were removed using the sim-
plifying function (by= “p.adjust”, cutoff= 0.3). The statistical significance of the
GO enrichment was tested using Benjamini and Hochberg with a cutoff q
value < 0.05. All the KEGG analyses with p values < 0.05 were enriched and shown.

Machine learning-based models. XGBoost, a boosted ensemble algorithm, was
implemented, and tenfold cross-validation was performed using MRM-based
proteomic data and/or clinical indexes for the identification of biomarkers. The
proteins used for prediction were selected at the validation stage based on a q
value < 0.05. Clinical indexes were selected based on q values < 0.05 between the
AMS4k and AMS1k groups and the nAMS4k and nAMS1k groups and by p
values < 0.05 between the AMS1k and nAMS1k groups and the AMS4k and
nAMS4k groups. The datasets between each comparison were divided into a
training set (60%) and a test set (40%). XGBoost was performed using the caret
package with the xgbTree method. Receiver operating characteristic (ROC) curves
were generated to assess the AUC with the pROC package87.

Correlations among proteins, clinical indexes, and symptom phenotypes.
Spearman correlation analyses among proteins, clinical indexes, and AMS symp-
tom phenotypes were performed using the psych package, and the results were
visualized using Cytoscape software88. Samples with <75% of observations were
eliminated during the correlation analysis. In addition, proteins and clinical
indexes observed in less than 75% of the samples were deleted, while symptom
phenotypes observed in less than 25% of the samples were deleted with the
exception of the symptom phenotypes involved in LLS between the AMS4k and
AMS1k groups as well as the AMS4k and nAMS4k groups. Features with a dif-
ference in detection rate >50% between the two groups were retained. Additionally,
features with the same value in each sample were deleted. The p values were
corrected using BH (q value) for multiple comparisons. Connections with p
values < 0.05 were selected for network visualization between the AMS4k and
AMS1k groups and the nAMS4k and nAMS1k groups because no connections
showed q values < 0.05, whereas connections with q values < 0.05 were selected
from the other two compared groups.

Statistics and reproducibility. For the baseline data, continuous variables are
presented as the means ± standard deviations (SDs) and medians with interquartile
ranges (IQRs), and the ordinal and nominal variables are presented as percentages.
The NPX data generated from PEA were compared by paired t test. The data
generated by MRM were compared by paired and unpaired two-tailed t test or
Welch’s t test based on homoscedasticity. The clinical indexes were compared by
two-tailed t test, Welch’s t test, or Wilcoxon test (paired or unpaired) considering a
normal distribution and homoscedasticity. The p values were corrected using BH (q
value) for multiple comparisons. Proteins with q values < 0.05 were defined as
DEPs. All statistical analyses were performed using R (version 4.0.2).

Ethics approval. Ethical approval was achieved from the Chinese PLA General
Hospital ethical committee with the approval identifier S2019-035-01, and all
protocols followed the established national and institutional ethical guidelines. All
participants provided signed written informed consent.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw MRM proteomic data analyzed in this study are available at iProX89 with the
corresponding dataset identifier PXD029063.

Code availability
The source code is freely available at Zenodo90 and Github (https://github.com/
Monica1227/AMS_biomarker).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03514-6

12 COMMUNICATIONS BIOLOGY |           (2022) 5:548 | https://doi.org/10.1038/s42003-022-03514-6 | www.nature.com/commsbio

http://www.olink.com/downloads
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/GetTransitions
https://github.com/Monica1227/AMS_biomarker
https://github.com/Monica1227/AMS_biomarker
www.nature.com/commsbio


Received: 12 December 2021; Accepted: 18 May 2022;

References
1. Meier, D. et al. Does this patient have acute mountain sickness?: the rational

clinical examination systematic review. JAMA 318, 1810–1819 (2017).
2. Luks, A. M., Swenson, E. R. & Bärtsch, P. Acute high-altitude sickness. Eur.

Respir. Rev. 26, 160096 (2017).
3. Zhang, P. et al. Novel insights into plasma biomarker candidates in patients

with chronic mountain sickness based on proteomics. Biosci. Rep. 41,
BSR20202219 (2021).

4. Roach, R. C. et al. The 2018 Lake Louise Acute Mountain Sickness Score. High.
Alt. Med. Biol. 19, 4–6 (2018).

5. Oliver, S. J. et al. Physiological and psychological illness symptoms at high
altitude and their relationship with acute mountain sickness: a prospective
cohort study. J. Travel Med. 19, 210–219 (2012).

6. Boos, C. J. et al. The relationship between anxiety and acute mountain
sickness. PLoS ONE 13, e0197147 (2018).

7. Zhang, C. et al. Evolution of the prevalence, clinical features and risk factors
for acute mountain sickness in the Qinghai-Tibet plateau. Res. Sq. https://doi.
org/10.21203/rs.3.rs-663450/v1. (2021).

8. Schneider, M., Bernasch, D., Weymann, J., Holle, R. & Bartsch, P. Acute
mountain sickness: influence of susceptibility, preexposure, and ascent rate.
Med. Sci. Sports Exerc. 34, 1886–1891 (2002).

9. Schiefer, L. M. et al. Validity of peripheral oxygen saturation measurements
with the Garmin Fēnix® 5X plus wearable device at 4559 m. Sensors 21, 6363
(2021).

10. Schoonman, G. G. et al. Hypoxia-induced acute mountain sickness is
associated with intracellular cerebral edema: a 3 T magnetic resonance
imaging study. J. Cereb. Blood Flow. Metab. 28, 198–206 (2008).

11. Julian, C. G. et al. Acute mountain sickness, inflammation, and permeability:
new insights from a blood biomarker study. J. Appl. Physiol. 111, 392–399
(2011).

12. Chen, S.-J. et al. Overactivation of corticotropin-releasing factor receptor type
1 and aquaporin-4 by hypoxia induces cerebral edema. Proc. Natl Acad. Sci.
USA 111, 13199–13204 (2014).

13. Bailey, D. M. et al. Altered free radical metabolism in acute mountain sickness:
implications for dynamic cerebral autoregulation and blood-brain barrier
function. J. Physiol. 587, 73–85 (2009).

14. Tsai, S.-H. et al. Roles of the hypoximir microRNA-424/322 in acute hypoxia
and hypoxia-induced pulmonary vascular leakage. FASEB J. 33, 12565–12575
(2019).

15. Lu, H. et al. Plasma proteomic study of acute mountain sickness susceptible
and resistant individuals. Sci. Rep. 8, 1265 (2018).

16. Capitanio, D. et al. TCA cycle rewiring fosters metabolic adaptation to oxygen
restriction in skeletal muscle from rodents and humans. Sci. Rep. 7, 9723
(2017).

17. Sharma, N. K., Sethy, N. K. & Bhargava, K. Comparative proteome analysis
reveals differential regulation of glycolytic and antioxidant enzymes in cortex
and hippocampus exposed to short-term hypobaric hypoxia. J. Proteom. 79,
277–298 (2013).

18. Julian, C. G. et al. Exploratory proteomic analysis of hypobaric hypoxia and
acute mountain sickness in humans. J. Appl. Physiol. 116, 937–944 (2014).

19. Tyagi, T. et al. Altered expression of platelet proteins and calpain activity mediate
hypoxia-induced prothrombotic phenotype. Blood 123, 1250–1260 (2014).

20. Padhy, G., Gangwar, A., Sharma, M., Bhargava, K. & Sethy, N. K. Plasma
Proteomics of Ladakhi Natives Reveal Functional Regulation Between Renin-
Angiotensin System and eNOS-cGMP Pathway. High. Alt. Med. Biol. 18,
27–36 (2017).

21. Paul, S., Gangwar, A., Bhargava, K. & Ahmad, Y. STAT3-RXR-Nrf2 activates
systemic redox and energy homeostasis upon steep decline in pO gradient.
Redox Biol. 14, 423–438 (2018).

22. Jain, S., Ahmad, Y. & Bhargava, K. Salivary proteome patterns of individuals
exposed to High Altitude. Arch. Oral. Biol. 96, 104–112 (2018).

23. Abdallah, C., Dumas-Gaudot, E., Renaut, J. & Sergeant, K. Gel-based and gel-
free quantitative proteomics approaches at a glance. Int. J. Plant Genomics
2012, 494572 (2012).

24. Barker, K. R. et al. Biomarkers of hypoxia, endothelial and circulatory
dysfunction among climbers in Nepal with AMS and HAPE: a prospective
case-control study. J. Travel Med. 23, taw005 (2016).

25. Du, X. et al. Alterations of human plasma proteome profile on adaptation to
high-altitude hypobaric hypoxia. J. Proteome Res. 18, 2021–2031 (2019).

26. Del Valle, D. M. et al. An inflammatory cytokine signature predicts COVID-
19 severity and survival. Nat. Med 26, 1636–1643 (2020).

27. Consiglio, C. R. et al. The immunology of multisystem inflammatory
syndrome in children with COVID-19. Cell 183, 968–981.e7 (2020).

28. Hoogeveen, R. M. et al. Improved cardiovascular risk prediction using targeted
plasma proteomics in primary prevention. Eur. Heart J. 41, 3998–4007 (2020).

29. Wallentin, L. et al. Plasma proteins associated with cardiovascular death in
patients with chronic coronary heart disease: A retrospective study. PLoS Med.
18, e1003513 (2021).

30. Kubota, R. et al. Genomic organization of the human myocilin gene (MYOC)
responsible for primary open angle glaucoma (GLC1A). Biochem. Biophys.
Res. Commun. 242, 396–400 (1998).

31. Liu, Q. et al. Suppressing mesenchymal stem cell hypertrophy and
endochondral ossification in 3D cartilage regeneration with nanofibrous
poly(l-lactic acid) scaffold and matrilin-3. Acta Biomater. 76, 29–38 (2018).

32. Vanderhaeghen, T., Beyaert, R. & Libert, C. Bidirectional crosstalk between
hypoxia inducible factors and glucocorticoid signalling in health and disease.
Front. Immunol. 12, 684085 (2021).

33. Kammerer, T. et al. Hypoxic-inflammatory responses under acute hypoxia: In
Vitro experiments and prospective observational expedition trial. Int. J. Mol.
Sci. 21, 1034 (2020).

34. Pietzsch, J. & Hoppmann, S. Human S100A12: a novel key player in
inflammation? Amino Acids 36, 381–389 (2009).

35. Yan, X. et al. Salidroside orchestrates metabolic reprogramming by regulating
the Hif-1α signalling pathway in acute mountain sickness. Pharm. Biol. 59,
1540–1550 (2021).

36. Han, Z.-B. et al. Hypoxia-inducible factor (HIF)-1 alpha directly enhances the
transcriptional activity of stem cell factor (SCF) in response to hypoxia and
epidermal growth factor (EGF). Carcinogenesis 29, 1853–1861 (2008).

37. Latorre, P. et al. c.A2456C-substitution in Pck1 changes the enzyme kinetic
and functional properties modifying fat distribution in pigs. Sci. Rep. 6, 19617
(2016).

38. Kim, Y. et al. Function of the pentose phosphate pathway and its key enzyme,
transketolase, in the regulation of the meiotic cell cycle in oocytes. Clin. Exp.
Reprod. Med. 39, 58–67 (2012).

39. Marks, P. A. A newer pathway of carbohydrate metabolism; the pentose
phosphate pathway. Diabetes 5, 276–283 (1956).

40. Abudureyimu, S. et al. Essential Role of Linx/Islr2 in the Development of the
Forebrain Anterior Commissure. Sci. Rep. 8, 7292 (2018).

41. Mandai, K. et al. LIG family receptor tyrosine kinase-associated proteins
modulate growth factor signals during neural development. Neuron 63,
614–627 (2009).

42. Obazawa, M. et al. Analysis of porcine optineurin and myocilin expression in
trabecular meshwork cells and astrocytes from optic nerve head. Investig.
Ophthalmol. Vis. Sci. 45, 2652–2659 (2004).

43. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S.
Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and
c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

44. Ma, R. et al. Expressions of vitamin D metabolic components VDBP, CYP2R1,
CYP27B1, CYP24A1, and VDR in placentas from normal and preeclamptic
pregnancies. Am. J. Physiol. Endocrinol. Metab. 303, E928–E935 (2012).

45. Li, Y. et al. Using composite phenotypes to reveal hidden physiological
heterogeneity in high-altitude acclimatization in a Chinese Han Longitudinal
Cohort. Phenomics 1, 3–14 (2021).

46. Jia, Z. et al. Impacts of the plateau environment on the gut microbiota and
blood clinical indexes in Han and Tibetan Individuals. mSystems 5, e00660-19
(2020).

47. Vijayan, A. L. et al. Procalcitonin: a promising diagnostic marker for sepsis
and antibiotic therapy. J. Intens. Care Med. 5, 51 (2017).

48. Panesar, N. S., Chan, K. W., Li, C. Y. & Rogers, M. S. Status of anti-thyroid
peroxidase during normal pregnancy and in patients with hyperemesis
gravidarum. Thyroid 16, 481–484 (2006).

49. Adeva-Andany, M. M., Pérez-Felpete, N., Fernández-Fernández, C.,
Donapetry-García, C. & Pazos-García, C. Liver glucose metabolism in
humans. Biosci. Rep. 36, e00416 (2016).

50. Preisler, N. et al. Fat and carbohydrate metabolism during exercise in
phosphoglucomutase type 1 deficiency. J. Clin. Endocrinol. Metab. 98,
E1235–E1240 (2013).

51. Mokas, S. et al. Hypoxia-inducible factor-1 plays a role in phosphate-induced
vascular smooth muscle cell calcification. Kidney Int. 90, 598–609 (2016).

52. Toye, A. M. et al. Band 3 Courcouronnes (Ser667Phe): a trafficking mutant
differentially rescued by wild-type band 3 and glycophorin A. Blood 111,
5380–5389 (2008).

53. Kokubo, Y. et al. Association of sixty-one non-synonymous polymorphisms in
forty-one hypertension candidate genes with blood pressure variation and
hypertension. Hypertens. Res. 29, 611–619 (2006).

54. Petrera, A. et al. Multiplatform approach for plasma proteomics:
complementarity of olink proximity extension assay technology to mass
spectrometry-based protein profiling. J. Proteome Res. 20, 751–762 (2021).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03514-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:548 | https://doi.org/10.1038/s42003-022-03514-6 | www.nature.com/commsbio 13

https://doi.org/10.21203/rs.3.rs-663450/v1
https://doi.org/10.21203/rs.3.rs-663450/v1
www.nature.com/commsbio
www.nature.com/commsbio


55. Golden, J. P. et al. RET signaling is required for survival and normal function
of nonpeptidergic nociceptors. J. Neurosci. 30, 3983–3994 (2010).

56. Kelman, L. The biological basis of headache. Expert Rev. Neurother. 11,
363–378 (2011).

57. Takacova, M. et al. Expression pattern of carbonic anhydrase IX in Medullary
thyroid carcinoma supports a role for RET-mediated activation of the HIF
pathway. Am. J. Pathol. 184, 953–965 (2014).

58. Greer, S. N., Metcalf, J. L., Wang, Y. & Ohh, M. The updated biology of
hypoxia-inducible factor. EMBO J. 31, 2448–2460 (2012).

59. Trupp, M., Raynoschek, C., Belluardo, N. & Ibáñez, C. F. Multiple GPI-
anchored receptors control GDNF-dependent and independent activation of
the c-Ret receptor tyrosine kinase. Mol. Cell. Neurosci. 11, 47–63 (1998).

60. Tano, G. D. et al. Identification and measurement of carbonic anhydrase-II
molecule numbers in the rat carotid body. Open Respir. Med. J. 3, 67–72
(2009).

61. Subbiah, V. et al. Precision targeted therapy with BLU-667 for -driven cancers.
Cancer Discov. 8, 836–849 (2018).

62. Subbiah, V. et al. Selective RET kinase inhibition for patients with RET-altered
cancers. Ann. Oncol. 29, 1869–1876 (2018).

63. Wixted, J. H. F., Rothstein, J. L. & Eisenlohr, L. C. Identification of
functionally distinct TRAF proinflammatory and phosphatidylinositol 3-
kinase/mitogen-activated protein kinase/extracellular signal-regulated kinase
kinase (PI3K/MEK) transforming activities emanating from RET/PTC fusion
oncoprotein. J. Biol. Chem. 287, 3691–3703 (2012).

64. Yoneda, T. et al. Activation of caspase-12, an endoplastic reticulum (ER)
resident caspase, through tumor necrosis factor receptor-associated factor
2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276,
13935–13940 (2001).

65. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific
apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98–103 (2000).

66. Xiong, Y., Wang, Y., Xiong, Y., Gao, W. & Teng, L. Salidroside alleviated
hypoxia-induced liver injury by inhibiting endoplasmic reticulum stress-
mediated apoptosis via IRE1α/JNK pathway. Biochem. Biophys. Res. Commun.
529, 335–340 (2020).

67. van Zoelen, M. A. D., Achouiti, A. & van der Poll, T. The role of receptor for
advanced glycation endproducts (RAGE) in infection. Crit. Care 15, 208
(2011).

68. Müller, M. C. A. et al. Contribution of damage-associated molecular patterns
to transfusion-related acute lung injury in cardiac surgery. Blood Transfus. 12,
368–375 (2014).

69. Das, D. et al. S100A12 expression in thoracic aortic aneurysm is associated
with increased risk of dissection and perioperative complications. J. Am. Coll.
Cardiol. 60, 775–785 (2012).

70. Foell, D. et al. Proinflammatory S100A12 can activate human monocytes via
Toll-like receptor 4. Am. J. Respir. Crit. Care Med. 187, 1324–1334 (2013).

71. Horiuchi, K. et al. Potential role for ADAM15 in pathological
neovascularization in mice. Mol. Cell. Biol. 23, 5614–5624 (2003).

72. Nishimi, S., Isozaki, T., Wakabayashi, K., Takeuchi, H. & Kasama, T. A
disintegrin and metalloprotease 15 is expressed on rheumatoid arthritis
synovial tissue endothelial cells and may mediate angiogenesis. Cells. 8, 32
(2019).

73. Charrier-Hisamuddin, L., Laboisse, C. L. & Merlin, D. ADAM-15: a
metalloprotease that mediates inflammation. FASEB J. 22, 641–653 (2008).

74. Liu, B. et al. IL-10 Dysregulation in Acute Mountain Sickness Revealed by
Transcriptome Analysis. Front. Immunol. 8, 628 (2017).

75. Song, T.-T. et al. Systemic pro-inflammatory response facilitates the
development of cerebral edema during short hypoxia. J. Neuroinflammation
13, 63 (2016).

76. Samanta, D. et al. PHGDH expression is required for mitochondrial redox
homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer
Res 76, 4430–4442 (2016).

77. Engel, A. L. et al. Serine-dependent redox homeostasis regulates glioblastoma
cell survival. Br. J. Cancer 122, 1391–1398 (2020).

78. Mughal, R. S. et al. Cellular mechanisms by which proinsulin C-peptide
prevents insulin-induced neointima formation in human saphenous vein.
Diabetologia 53, 1761–1771 (2010).

79. Luppi, P., Cifarelli, V., Tse, H., Piganelli, J. & Trucco, M. Human C-peptide
antagonises high glucose-induced endothelial dysfunction through the nuclear
factor-kappaB pathway. Diabetologia 51, 1534–1543 (2008).

80. Larsen, J. J., Hansen, J. M., Olsen, N. V., Galbo, H. & Dela, F. The effect of
altitude hypoxia on glucose homeostasis in men. J. Physiol. 504(Pt 1), 241–249
(1997).

81. Hill, N. E. et al. Continuous glucose monitoring at high altitude-effects on
glucose homeostasis. Med. Sci. Sports Exerc. 50, 1679–1686 (2018).

82. Assarsson, E. et al. Homogenous 96-plex PEA immunoassay exhibiting high
sensitivity, specificity, and excellent scalability. PLoS ONE 9, e95192 (2014).

83. Ding, J. et al. A metabolome atlas of the aging mouse brain. Nat. Commun. 12,
6021 (2021).

84. Gómez-Rubio, V. ggplot2—elegant graphics for data analysis (2nd edition). J.
Stat. Softw. 77 (2017).

85. Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for
creating interactive cluster heatmaps for online publishing. Bioinformatics 34,
1600–1602 (2018).

86. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS 16, 284–287
(2012).

87. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and
compare ROC curves. BMC Bioinform. 12, 77 (2011).

88. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

89. Ma, J. et al. iProX: an integrated proteome resource. Nucleic Acids Res. 47,
D1211–D1217 (2019).

90. Yang, J. & Zhilong, J. Monica1227/AMS_biomarker: v1.0.0. https://doi.org/10.
5281/ZENODO.6418170 (Zenodo, 2022).

Acknowledgements
We thank the participants who donated samples and all colleagues who contributed to
this study during the sample collection. This work was supported by the National Natural
Science Foundation of China [31701155] and the Science and Technology Innovation
Special Zone [19-163-12-ZD-037-003-02].

Author contributions
Conceptualization and Supervision: K.H., Z.J.; Sample collection: J.S., X.Z. and Z.J.; Data
analysis: J.Y., X.S.; Data interpretation: Z.J. and J.Y.; Writing: J.Y.; Editing: Z.J., J.Y. and
K.H.; Revising: J.Y., Z.J., and X.W. All authors read and approved the final paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-03514-6.

Correspondence and requests for materials should be addressed to Zhilong Jia or
Kunlun He.

Peer review information Communications Biology thanks Shalini Aggarwal, Vipin
Kumar and the other, anonymous, reviewer(s) for their contribution to the peer review of
this work. Primary Handling Editors: Eirini Marouli and Luke R. Grinham. Peer reviewer
reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03514-6

14 COMMUNICATIONS BIOLOGY |           (2022) 5:548 | https://doi.org/10.1038/s42003-022-03514-6 | www.nature.com/commsbio

https://doi.org/10.5281/ZENODO.6418170
https://doi.org/10.5281/ZENODO.6418170
https://doi.org/10.1038/s42003-022-03514-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Proteomic and clinical biomarkers for acute mountain sickness in a longitudinal cohort
	Results
	Study design for exploring AMS
	PEA-based identification of proteins involved in AMS at the discovery stage
	Identification of biological functions involved in AMS at the discovery stage
	Validation via multiple reaction monitoring
	Key proteins involved in the pathogenesis of AMS
	Protective proteins for AMS
	Predictive biomarkers of AMS
	Diagnostic biomarkers of AMS
	High AMS classification accuracy
	Key clinical indexes of AMS
	Changes in carbohydrate metabolism between individuals with and without AMS
	Association among proteins, AMS symptom phenotypes, and clinical indexes

	Discussion
	Methods
	Subjects
	Evaluation of the AMS status at high altitude
	Experimental setup, sample collection, and biochemical detection
	Plasma proteome profiling and analysis
	DEP validation by multiple reaction monitoring
	Functional enrichment analysis
	Machine learning-based models
	Correlations among proteins, clinical indexes, and symptom phenotypes
	Statistics and reproducibility
	Ethics approval

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




