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Machine learning reveals connections 
between preclinical type 2 diabetes subtypes 
and brain health
Fan Yi,1,† Jing Yuan,2,† Fei Han,2 Judith Somekh,3 Mor Peleg,3 Fei Wu,1 Zhilong Jia,4

Yi-Cheng Zhu2 and Zhengxing Huang1

†These authors contributed equally to this work.

Previous research has established type 2 diabetes mellitus as a significant risk factor for various disorders, adversely 
impacting human health. While evidence increasingly links type 2 diabetes to cognitive impairment and brain disor-
ders, understanding the causal effects of its preclinical stage on brain health is yet to be fully known. This knowledge 
gap hinders advancements in screening and preventing neurological and psychiatric diseases. To address this gap, 
we employed a robust machine learning algorithm (Subtype and Stage Inference, SuStaIn) with cross-sectional clin-
ical data from the UK Biobank (20 277 preclinical type 2 diabetes participants and 20 277 controls) to identify under-
lying subtypes and stages for preclinical type 2 diabetes.
Our analysis revealed one subtype distinguished by elevated circulating leptin levels and decreased leptin receptor levels, 
coupled with increased body mass index, diminished lipid metabolism, and heightened susceptibility to psychiatric con-
ditions such as anxiety disorder, depression disorder, and bipolar disorder. Conversely, individuals in the second subtype 
manifested typical abnormalities in glucose metabolism, including rising glucose and haemoglobin A1c levels, with ob-
served correlations with neurodegenerative disorders. A >10-year follow-up of these individuals revealed differential de-
clines in brain health and significant clinical outcome disparities between subtypes. The first subtype exhibited faster 
progression and higher risk for psychiatric conditions, while the second subtype was associated with more severe progres-
sion of Alzheimer’s disease and Parkinson’s disease and faster progression to type 2 diabetes. Our findings highlight that 
monitoring and addressing the brain health needs of individuals in the preclinical stage of type 2 diabetes is imperative.
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Introduction
Type 2 diabetes mellitus (T2DM) represents a significant global pub-
lic health challenge, with its prevalence steadily increasing. In 2021, 
it affected 537 million adults worldwide.1 Projections from the 
International Diabetes Federation indicate that by 2030, this num-
ber will rise to 643 million, reaching a staggering 783 million by 
2045.1,2 The phase during which clinical symptoms remain absent 
but biological irregularities hint at the potential development of 
T2DM, namely, the preclinical stage of type 2 diabetes 
(preclinical-T2DM), plays an important role in the development of 
T2DM.3 Recent research has indicated a link between T2DM and de-
terioration in brain health, including accelerated rates of neuro-
logical and cognitive decline.4,5 In terms of preclinical-T2DM, 
these aspects remain poorly understood.

First, there is limited knowledge regarding how preclinical-T2DM 
progresses over time before the onset of T2DM and how the pheno-
typic and genetic aetiologies of preclinical-T2DM vary. While previ-
ous studies have clustered prediabetes into subtypes and explored 
their connections with T2DM and multi-systemic impairments,6

these approaches often overlook the longitudinal diversity of 
preclinical-T2DM. Conversely, progressive heterogeneity charac-
terizes T2DM, potentially emerging from its preclinical stages and 
subtly influencing brain health, encompassing neurological, psychi-
atric and cognitive functions. Understanding these complexities is 
crucial to elucidating how preclinical-T2DM evolves and affects vari-
ous aspects of health, particularly brain structures and functions.

Addressing this challenge can be achieved by leveraging ma-
chine learning models that are increasingly used in biomedical re-
search.7 One such model, the Subtype and Stage Inference (SuStaIn) 
model,8 originally designed to capture disease progression patterns 
in chronic conditions, facilitates longitudinal inference from cross- 
sectional data by automatically identifying distinct spatiotemporal 
trajectories of cumulative pathological alterations shown by mea-
sured biomarkers.8-13 In this study, we employed SuStaIn to de-
cipher heterogenous progressive patterns of preclinical-T2DM, 
offering valuable insights into disease onset and progression. 
This aids in the establishment of quantitative metrics for T2DM 
screening and prognostication. By identifying subtypes and pro-
gressive trajectories of preclinical-T2DM and exploring systematic 
changes in brain health, we can enhance our ability to assess it pre-
cisely in clinical practice. This not only benefits individuals with 
preclinical-T2DM but also contributes to better clinical outcomes, 
reducing the risk of neuropathy and cognitive dysfunction etc.14

In this study, we embarked on a comprehensive investigation into 
the heterogenous progression of preclinical-T2DM and its implica-
tions for brain health using a multi-faceted research approach 
(Fig. 1). First, we identified 20 277 preclinical-T2DM subjects with a ba-
lanced 20 277 control group from UKB for analysis (Fig. 1A). Next, we 
utilized screened 18 preclinical-T2DM-associated clinical indexes 
and applied SuStaIn to stratify preclinical-T2DM subjects into distinct 
subtypes and stages, leading to two subtypes with distinct metabolic 
profiles (Fig. 1B). We then analysed phenotypic associations between 

the two subtypes and a variety of brain disorders, cognitive functions, 
as well as molecular phenotypes, proteins and metabolites (Fig. 1C). 
Additionally, using genome-wide association studies (GWAS), we 
identified genetic variants significantly associated with each 
preclinical-T2DM subtypes. Expanding on these findings, we investi-
gated genetic relationships between the subtypes and brain disorders 
via genetic, genetic colocalization and Mendelian randomization 
(MR) analyses (Fig. 1C). By exploring the genetic and molecular land-
scape of preclinical-T2DM subtypes and their impact on brain health, 
we highlighted how underlying phenotypic and genetic variation 
drives the subtypes and stages of preclinical-T2DM. These insights 
improve our understanding of the complex interplay between 
preclinical-T2DM and brain health.

Materials and methods
Study cohort

In this study, we leveraged the UK Biobank (UKB) dataset, a large bio-
medical cohort comprising over 500 000 participants, as the primary 
data for our analyses. The use of UKB data was approved by UKB un-
der application number: 85757. Approval for the UKB study was ob-
tained from the National Research Ethics Committee (REC reference 
11/NW/0382), and informed consent was obtained from all partici-
pants. The inclusion and exclusion criteria process depicted in 
Fig. 1A involves the identification of preclinical-T2DM cases and con-
trol participants from the UKB dataset. The preclinical-T2DM sub-
jects included in this study were participants with T2DM diagnosis 
after their initial assessment at the UKB (instance = 0). The UKB data-
set comprised 41 783 patients diagnosed with T2DM and 460 628 con-
trol participants without T2DM. Diagnoses of T2DM were identified 
through the International Classification of Diseases, 10th revision 
(ICD-10) codes (E11 for T2DM), as well as self-reported non-cancer 
T2DM diagnoses. To refine the study population, several exclusion 
criteria (Fig. 1A and Supplementary material, ‘Methods’ section) 
were applied, yielding a total of 20 277 individuals (aged 40–70 years, 
mean age 59.61 years, 42.43% female) with preclinical-T2DM.

Lastly, we employed propensity score matching (PSM) for the 
construction of a matched control group to ensure the computabil-
ity of the SuStaIn model (Supplementary material, ‘Methods’ sec-
tion). Thereafter, we established a balanced control group of 20  
277 individuals without any diabetes (aged 40–73 years, mean age 
59.96 years, 41.75% female) with the least standard mean difference 
(SMD) compared with the preclinical-T2DM group for subsequent 
analyses (Supplementary Table 1).

Feature selection process

Initially, we collected 62 biomarkers from the UKB dataset, includ-
ing blood biochemistry markers, urine assay results, blood count, 
physical measurements and blood pressure, for SuStaIn modelling 
(Supplementary Table 2). These biomarkers were accessed for more 
than 420 000 individuals from their initial assessment at the UKB. 
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Given the computational demands of the SuStaIn model and in-
sight from prior research suggesting an optimal number of features 
of approximately 20 for computational feasibility,8,10 we imple-
mented a cutoff criterion to select the most important biomarkers 

for SuStaIn modelling after data imputation (Supplementary 
material, ‘Methods’ section). This process identified 18 pivotal bio-
markers, consisting of haemoglobin A1c (HbA1c), body mass index 
(BMI), high-density lipoprotein cholesterol, triglyceride-glucose 

Figure 1 Overview of the study design. (A) Flow chart depicting the inclusion and exclusion criteria for data selection from the UK Biobank (UKB). We 
selected subjects with preclinical-type-2 diabetes mellitus (T2DM), defined as the phase preceding the onset of T2DM, along with a corresponding ba-
lanced control group from the UKB for analysis. (B) Application of the SuStaIn model to identify subtypes and stages of preclinical-T2DM. The model 
identified two subtypes: Subtype 1 (S1, leptin-sensitive) and Subtype 2 (S2, diabetes-vanilla) with two distinct progression trajectories, using 18 
preclinical-T2DM-associated clinical biomarkers. (C) Associations with brain health. We examined the associations of the identified subtypes with 
brain health using multiple analytical methods, including phenotypic associations, long-term imaging-derived phenotype association analysis, 
genetic associations, Mendelian randomization and prediction analysis. AD = Alzheimer’s disease; ANX = anxiety disorder; BMI = body mass index; 
CHOL = cholesterol; DEP = depression; Glu = glucose; HbA1c = haemoglobin A1c; HDLc = high-density lipoprotein cholesterol; LD = linkage disequilibrium; 
LDLc = low-density lipoprotein cholesterol; LEP = leptin; LEP = leptin receptor; PD = Parkinson’s disease; TG = triglycerides. 
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index, high light scatter reticulocyte count, glucose, reticulocyte 
count, immature reticulocyte fraction, apolipoprotein A, alanine 
aminotransferase, triglycerides, urate, white blood cell count, 
cholesterol, C-reactive protein, lymphocyte count, low-density lipo-
protein cholesterol (LDLc) and vitamin D. For detailed information 
on the selected biomarkers, please refer to Supplementary Table 2.

Identification of subtypes and stages for 
preclinical-type 2 diabetes mellitus

To unveil the diverse manifestations of preclinical-T2DM and explore 
its interplay with brain health, we utilized the SuStaIn model to cat-
egorize participants with preclinical-T2DM into distinct subtypes and 
stages of disease progression. We applied the linear z-scored SuStaIn 
model,15 integrating the 18 selected clinical biomarkers for subtype 
and stage identification (Supplementary material, ‘Methods’ section).

Furthermore, to ascertain the optimal number of preclinical- 
T2DM subtypes, we employed a 10-fold cross-validation approach, 
ranging from one to five subtypes. Performance evaluation was 
conducted using the Cross-Validation Information Criterion 
(Supplementary material, ‘Methods’ section).11,15 Therefore, consid-
ering the two-subtype model for its optimal balance of simplicity 
and explanatory power, we chose to interpret the findings based on 
the two-subtype model.

Phenotypic associations between preclinical-type 2 
diabetes mellitus subtypes and brain health

We examined the phenotypic associations between preclinical-T2DM 
subtypes and brain health. Our analysis included a broad spectrum 
of phenotypic measures, consisting of brain structure and function, 
brain disorders, cognitive functions and metabolic and proteomic 
profiles (Supplementary material, ‘Methods’ section).

GWAS on preclinical-type 2 diabetes mellitus 
subtypes

We conducted GWASs using genotyped and imputed data from the 
UKB on both subtypes of preclinical-T2DM. Genome-wide genotyping 
data was performed on all UKB participants using the UK Biobank 
Axiom Array, followed by imputation using the Haplotype Reference 
Consortium and UK10K as reference panels (GRCh37 assembly).16

The analyses were stratified into two comparative sets: S1 (n = 7942) 
versus controls (n = 20 277) and S2 (n = 9439) versus the same control 
group (n = 20 277). After stringent quality control (Supplementary 
material, ‘Methods’ section), the GWAS analyses were performed 
using PLINK software (v.1.90 beta), with adjustments for covariates in-
cluding sex, age, smoking status, alcohol drinking status, income le-
vel, education attainment and the first ten principal components to 
address potential population stratification effects. The genome-wide 
significance threshold was set to 5.0 × 10−8. We employed the 
Functional Mapping and Annotation (FUMA)17 platform to annotate 
the results of the GWAS (Supplementary material, ‘Methods’ section).

Genetic correlation and colocalization of 
preclinical-type 2 diabetes mellitus subtypes and 
brain health

To evaluate the genetic associations between preclinical-T2DM 
subtypes and brain health, we employed two genetic analysis tech-
niques: genetic correlation and colocalization analysis, utilizing 
publicly available GWAS results (Supplementary Table 11). Firstly, 
we utilized linkage disequilibrium score regression (LDSC)18 to 
measure the genetic correlation between the T2DM subtypes and 

outcomes. Only high-quality single nucleotide polymorphisms 
(SNPs) documented in the HapMap3 dataset were utilized for esti-
mation, with the LD score derived from the 1KGp3 EUR panel em-
ployed for LDSC analysis.

Furthermore, to determine whether the preclinical-T2DM 
subtypes share a common causal variant with brain disorders, we 
conducted colocalization analysis using the R package ‘coloc’ 
(Supplementary material, ‘Methods’ section).19-21 In accordance 
with established conventions,22 variants with a posterior probability 
of LDSC > 0.75 were considered colocalized variants (indicating 
shared causal variants) for preclinical-T2DM subtypes and brain 
disorders.

Mendelian randomization analyses

To further explore the causal relationship between preclinical-T2DM 
subtypes and brain disorders, we conducted two-sample Mendelian 
randomization (MR) analyses using the R package ‘TwoSampleMR’ 
(Supplementary material, ‘Methods’ section).

Prediction analyses

To evaluate the predictive power of these subtypes for disease pro-
gression, we examined the efficacy and applicability of 
preclinical-T2DM subtypes as predictive clinical indicators for 
brain disorders as outcomes. We further investigated whether in-
corporating subtype information could enhance risk prediction of 
brain disorders (Supplementary material, ‘Methods’ section).

Results
Identification of robust subtype and stages for 
preclinical-type 2 diabetes mellitus

Two distinct subtypes of preclinical-T2DM were identified with 18 bio-
markers of 40 544 individuals in UKB using the SuStaIn algorithm 
(Fig. 2A). We selected preclinical-T2DM individuals, defined as the in-
dividuals at the cohort baseline who will have T2DM at follow-up 
based on the inclusion and exclusion criteria (Fig. 1A), resulting in 
20 277 preclinical-T2DM and 20 277 propensity score matched con-
trols. Due to the computation requirements, we selected 18 of 62 bio-
markers from the baseline UKB dataset due to their significance for 
preclinical-T2DM, as determined by larger effect sizes in univariable 
logistic regression (Fig. 2A and Table 1). Using a ten-fold cross- 
validation approach, we determined the most robust result, revealing 
two distinct subtypes, Subtype 1 (S1) and Subtype 2 (S2), with 36 
subtype-specific stages (S1, n = 7 942, mean age 59 years, 52% female; 
and S2, n = 9 439, mean age 60 years, 37% female). Notably, we ex-
cluded 2896 individuals assigned as being in stage 0, as stage 0 indi-
cates that none of the biomarkers have reached the z-score 
threshold. This distinction highlights two distinct clinical and patho-
physiological trajectories for preclinical-T2DM (Fig. 2A and B). 
Moreover, cross-validation demonstrated a high consistency in the 
identification of subtypes for each preclinical-T2DM participant, 
with the majority of subjects (96.16% on average) consistently as-
signed to the same group across validation folds (Supplementary 
Fig. 2). These findings further confirm the stability and reproductivity 
of the results obtained from SuStaIn.

Two distinct metabolic profiles of preclinical-type 2 
diabetes mellitus

The two subtypes of preclinical-T2DM exhibited significant differ-
ences in clinical biomarkers (Fig. 2D, Table 1 and Supplementary 
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Figure 2 Identification of subtypes and stages of preclinical-type 2 diabetes mellitus. (A) An overview of the two distinct preclinical-type 2 diabetes 
mellitus (T2DM) subtypes identified by the Subtype and Stage Inference (SuStaIn) algorithm. (B) Positional variance diagrams of two distinct metabolic 
trajectories obtained from SuStaIn. The diagrams visualize the cumulative probability of each biomarker reaching a specific z-score threshold. The col-
ours indicate the two z-score thresholds for each biomarker: red indicates a mild biomarker change, blue indicates a severe biomarker change. The 
colour density represents the proportion of the posterior distribution where events (y-axis) occur at specific positions in the sequence (x-axis); f repre-
sents the proportion of individuals assigned to each phenotype. (C) Comparison of time to T2DM diagnosis for the two subtypes. (D) Comparison of the 
mean z-scores of 18 selected clinical biomarkers across the two identified subtypes, where biomarkers were z-scored relative to the control group, ad-
justing for age, sex, smoking status, alcohol drinking status, income level and educational attainment. A higher z-score indicates a greater deviation 
from the control group norm. (E–J) Progressions of various biomarkers across SuStaIn stages. Six selected biomarkers with remarkably distinct progres-
sion in the two subtypes are illustrated. The progressions of other biomarkers are presented in Supplementary Figs 5–16. r = Pearson’s correlation be-
tween biomarkers and SuStaIn stages for each subtype. ALT = alanine aminotransferase; ApoA = apolipoprotein A; BMI = body mass index; CRP =  
C-reactive protein; CHOL = cholesterol; HbA1c = haemoglobin A1c; HDLc = high-density lipoprotein cholesterol; HLS Retic = high light scatter reticulo-
cyte count; IRF = immature reticulocyte fraction; LDLc = low-density lipoprotein cholesterol; LYM = lymphocyte count; RET = reticulocyte count; TG =  
triglycerides; TyG = triglyceride-glucose index; WBC = white blood cell count.
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Fig. 17). Compared with S2, S1 exhibited elevated BMI, total choles-
terol, triglycerides, urate and LDLc (Table 1, Fig. 2D, G and H and 
Supplementary Figs 11, 12, 14 and 17). These heightened biomar-
kers may suggest a correlation with more severe metabolic 
dysregulation in lipid metabolism for S1. Additionally, S1 demon-
strated higher levels in inflammatory biomarkers, including reticu-
locyte count, immature reticulocyte fraction, C-reactive protein, 
white blood cell count and lymphocyte count (Fig. 2D and J and 
Supplementary Figs 7, 8, 13, 15 and 17), potentially indicating a 
more pronounced inflammatory activity. Moreover, S1 presented 
with lower levels of Vitamin D (Fig. 2D and Table 1). Studies have re-
ported that vitamin D supplementation among individuals with 
prediabetes can mitigate the risk of developing T2DM and facilitate 
the transition from prediabetes to normoglycaemia.23 In contrast, 
S2 was associated with elevated levels of glucose as well as 
HbA1c, with these increases becoming more pronounced across 
the SuStaIn stages (Fig. 2E and F and Supplementary Fig. 17). 
Furthermore, it was observed that individuals in S2 were, on aver-
age, closer to T2DM diagnosis, with an estimated average time of 6.5 
years to diagnosis, compared with 7.6 years for S1 (Fig. 2C, Table 1
and Supplementary Fig. 4). This observation suggests that although 
both subtypes were in the early stage of T2DM, S2 individuals were 
closer to the T2DM diagnosis, and therefore may represent those 
with more advanced glycaemic abnormalities. These findings 
underscore the heterogeneity within preclinical-T2DM and suggest 
that the two subtypes may represent distinct metabolic profiles.

Phenotypic associations of preclinical-type 2 
diabetes mellitus subtypes on brain health

We examined the phenotypic association with 12 brain disorders 
between the two subtypes and the controls to explore the clinical 
significance of the two preclinical-T2DM subtypes. Our findings 

revealed that compared with S2, S1 showed a significantly higher 
risk of psychiatric disorders [Fig. 3; false discovery rate (FDR) 
adjusted P-values for S1 versus S2 <0.05], including anxiety, bipolar, 
depression and sleep disorders. In addition, the risk for Alzheimer’s 
disease, Parkinson’s disease and stroke was slightly increased in S2 
compared with S1, but the difference did not reach statistical sig-
nificance (Fig. 3; FDR adjusted P-values for S1 versus S2 >0.05). 
These associations highlight the intricate relationship between 
preclinical-T2DM subtypes and brain health, indicating potential 
shared mechanism-related pathways and comorbidities.

We also investigated the associations with six cognitive func-
tions between the two subtypes and controls. Both subtypes were 
associated with significant declines across several cognitive as-
pects, including numeric memory, symbol digit substitution, reac-
tion time, fluid intelligence and reasoning and Trail-Making Test 
performance compared with controls, although the differences be-
tween S1 and S2 were not statistically significant (Fig. 4A–F). 
Specifically, S1 showed slightly worse performance on executive 
functioning, with a higher impairment in symbol digit substitution 
and the Trail-Making Test compared with S2 (Fig. 4B and F). 
Conversely, S2 showed slightly worse performance on numeric 
memory and reaction time, involving the ability to memorize and 
neural processing speed and response (Fig. 4A and C).

We evaluated the proteomic phenotypes with two subtypes 
of preclinical-T2DM. In the proteomic analysis, we found 
BGN-specific proteins (BGN) were highly expressed in S2, while 
brain-specific and immune-specific proteins, OXT and LAT2, were 
highly expressed in S1 (Fig. 4G). Fibroblast growth factor 21 
(FGF21), with the highest expression observed in S1, was upregu-
lated in S1 compared with healthy controls and S2. FGF21, a pivotal 
player in the regulation of energy balance and glucose as well as li-
pid homeostasis, has gathered attention as a therapeutic target for 
T2DM and obesity. Clinical trials utilizing FGF21 analogues and 

Table 1 Basic characteristics and the 18 clinical biomarkers of the two subtypes of preclinical-type 2 diabetes mellitus

Variables Normal range S1 (n = 7942) S2 (n = 9439) P-value

Age, years – 58.35 60.47 1.44 × 10−85

Sex (female), % – 49.94 37.07 7.14 × 10−66

Time to diabetes diagnosis, years – 7.53 6.27 1.39 × 10−123

HbA1c, mmol/mol <42 39.78 45.28↑ <2.23 × 10−308

Glucose, mmol/l 3.9–5.6 5.19 6.11↑ <2.23 × 10−308

TyG 6.98–10.71 9.26 9.03 1.80 × 10−201

BMI 18.5–24.9 33.21↑ 30.69↑ 4.98 × 10−227

HDLc, mmol/l >1.6 1.18↓ 1.20↓ 8.42 × 10−11

LDLc, mmol/l <3 3.71↑ 2.82 <2.23 × 10−308

TG, mmol/l <1.69 2.79↑ 1.94↑ <2.23 × 10−308

CHOL, mmol/l <5.17 5.79↑ 4.63 <2.23 × 10−308

ApoA, g/l 1.02–2.0 1.40 1.40 0.34
ALT, U/l 7–56 31.10 27.67 7.02 × 10−61

HLS Retic, × 1012 cells/l – 0.027 0.022 <2.23 × 10−308

RET, × 1012 cells/l – 0.082 0.068 1.07 × 10−275

IRF 0.16–0.24 0.33↑ 0.31↑ 2.37 × 10−110

WBC, × 109 cells/l 4–11 7.93 7.44 5.23 × 10−69

CRP, mg/l <10 4.57 2.80 5.54 × 10−219

LYM, × 109 cells/l – 2.27 2.10 2.62 × 10−57

Urate, μmol/l M: 200–420 
F: 140–360

373.29 339.56 1.16 × 10−177

Vitamin D, nmol/l 30–50 38.21 46.54 3.63 × 10−175

Abnormal values of clinical indexes are marked in bold. Up-arrows indicate values above the normal range and down-arrows indicate values below the normal range. ALT =  
alanine aminotransferase; ApoA = apolipoprotein A; BMI = body mass index; CHOL = cholesterol; CRP = C-reactive protein; F = female; HbA1c = haemoglobin A1c; HDLc =  
high-density lipoprotein cholesterol; HLS Retic = high light scatter reticulocyte count; IRF = immature reticulocyte fraction; LDLc = low-density lipoprotein cholesterol; LYM =  
lymphocyte count; M = male; RET = reticulocyte count; S1/S2 = Subtype 1/2; TG = triglycerides; TyG = triglyceride-glucose index; WBC = white blood cell count.
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mimetics have shown promise in patients with obesity and 
T2DM,24 suggesting a potential physiological response of FGF21 to 
the preclinical status of T2DM. Leptin exhibits a similar expression 
pattern to FGF21, indicating a potential association with the 

preclinical state of T2DM (Fig. 4H and I). Conversely, the expression 
patterns of leptin receptors across the three groups were dramatic-
ally opposed, suggesting a possible impairment in leptin receptor 
signalling (Fig. 4H and I). This observation aligned with studies 

Figure 3 Hazard ratios of the two preclinical-type 2 diabetes mellitus subtypes on the onset of brain disorders. The hazard ratios (HRs) for the two sub-
types were estimated by utilizing the Cox proportion hazard model and adjusted by sex, age, smoking status, alcohol drinking status, income level and 
education attainment. The HR was used to compare the progression rate of the diseases between each subtype and the control group (with the control 
group as the reference) and also between the two subtypes (with Subtype 1 as the reference). HR >1 indicates an increased risk, while HR <1 indicates a 
reduced risk, of developing the specific disease. P-values were adjusted for multi-testing using false discovery rate (FDR) correction at the threshold of 
5% significance level according to the Benjamini-Hochberg procedure. CI = confidence interval; S1 = Subtype 1; S2 = Subtype 2.
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utilizing leptin receptor-deficient db/db mice as models for T2DM.25

Elevated circulating leptin concentrations, as observed in indivi-
duals with obesity, are often attributed to leptin resistance,26,27 po-
tentially suggesting that S1 is related to leptin resistance. 
Leptin-resistant syndromes are known to contribute to severe 

insulin resistance and diabetes.28-30 Furthermore, insulin-like 
growth factor binding protein 1 (IGFBP1) as well as β-klotho exhibit 
decreased expression levels in S1 individuals compared with 
healthy controls (Fig. 4G). Reduced concentrations of circulating 
IGFBP1 have been linked to insulin resistance and diabetes,31 while 

Figure 4 Phenotypic associations with brain health. (A–F) Phenotypic associations for six cognitive functions between controls and the two subtypes. 
Associations were measured using univariate analysis, z-scored relative to the control group and adjusted for sex, age, smoking status, alcohol drinking 
status, income level and educational attainment. *significant association after false discovery rate (FDR) correction (FDR adjusted P-value < 0.05). 
(G) Comparison of proteomic expressions between controls and the two subtypes. Log fold-change (logFC) and statistical significance were used to 
show differences in proteomic expressions across the three groups: Controls, Subtype 1 (S1) and Subtype 2 (S2). Significant differences were assessed 
using limma with FDR-adjusted P-value < 0.05 after adjusting sex and age confounding variables. Thirty-three proteins with logFC of S2 versus S1 >0.2 
or <−0.3 are visualized using heat map, and a full list of proteins exhibiting differential abundance is listed in Supplementary material, ‘Data’ section 
9. (H and I) Association the abundance of leptin and leptin receptor across SuStaIn stages for the two subtypes. SuStain = Subtype and Stage Inference 
model.
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β-klotho, acting as a cell-surface glucose sensor and co-receptor for 
FGF21, holds promise as a therapeutic target for T2DM by modulat-
ing glucose-stimulated insulin release in pancreatic β cells. As the 
triglyceride to high-density lipoprotein cholesterol (TG: HDLc) ratio 
and metabolic score for insulin resistance (METS-IR) serve as read-
ily measurable markers of insulin resistance, our findings revealed 
that S1 exhibited significantly elevated TG: HDLc and METS-IR le-
vels compared with S2 and the healthy control group (Figs 2D and 
4G). Significantly higher interleukin-1 receptor agonist (IL-1RA) 
was observed in S1 compared with S2 and controls. Circulating 
IL-1RA (encoded by IL1RN), an endogenous inhibitor of proinflam-
matory IL-1β, may be protective against the development of insulin 
resistance.32

Moreover, we evaluated the associations between metabolomic 
phenotypes and two subtypes of preclinical-T2DM. We observed sig-
nificantly higher levels of total cholesterol, total triglycerides, total 
fatty acids, omega-6 fatty acids and total lipids in lipoprotein parti-
cles in S1 compared with S2 and the healthy control group 
(Supplementary Fig. 19). Our findings suggested that these 

associations tended to be particularly pronounced in S1. 
Furthermore, we found that the ratios of polyunsaturated fatty acids 
to total fatty acids, glucose-lactate and glucose were lowest in S2 
among the three groups.

Long-term effects of preclinical-type 2 diabetes 
mellitus subtypes on the brain

The analysis of long-term effects on the brain structure and function 
across the two subtypes unveiled distinct outcomes (Fig. 5). After ad-
justing for various covariates, we observed that although the differ-
ences in changing rate between the two subtypes were not 
statistically significant (FDR adjusted P-value > 0.05; Supplementary 
material, ‘Data’, section 8), both subtypes of preclinical-T2DM were 
associated with long-term changes in many brain regions. In terms 
of MRI-based brain structure, S1 exhibited slightly more atrophy 
from cortical and subcortical volume and cortical area over time, par-
ticularly in the putamen, accumbens, thalamus and cerebral white 
matter (Fig. 5A and B and Supplementary Figs 20 and 21). In contrast, 

Figure 5 Long-term associations with the brain structures and functions. (A–D) Long-term effects of preclinical-type 2 diabetes mellitus subtypes on 
the selected image derived phenotypes (IDPs) from brain MRIs. Subjects for each subtype were categorized into three groups based on imaging acqui-
sition intervals (4–7 years, 7–10 years and >10 years) to analyse temporal changes in the brain structures and functions. We illustrated the mean z-score 
of selected IDPs with the most pronounced effects associated with subtypes. Long-term associations with other IDPs were presented in Supplementary 
Fig. 29. The IDP values were z-scored relative to the control group and adjusted for sex, age, smoking status, alcohol drinking status, income level and 
educational attainment. Total intracranial volume was also adjusted for cortical and subcortical volumes. The colour map illustrates the mean z-scores 
of the IDPs for each time interval; red indicates larger IDP values and blue indicates smaller IDP values.
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S2 displayed slightly more atrophy in cortical and subcortical volume 
and cortical thickness of the fusiform gyrus, superior temporal lobe, 
superior parietal lobe and middle temporal lobe (Fig. 5A and C and 
Supplementary Figs 20 and 22). Regarding white matter integrity 
and microstructural organization, both subtypes showed decreases 
in mean white matter fractional anisotropy (FA) in regions such as 
the inferior cerebral peduncle, cerebral peduncle and fornix (Fig. 5D
and Supplementary Fig. 23). S1 also demonstrated reductions in the 
genu of corpus callosum, inferior cerebral peduncle and superior 
fronto occipital fasciculus, while S2 displayed more reductions in 
the middle cerebellar peduncle, splenium of corpus callosum and 
posterior limb of internal capsule (Fig. 5D).

GWAS of the two preclinical-type 2 diabetes mellitus 
subtypes

We investigated the subtype-specific associated SNPs for the two 
preclinical-T2DM subtypes using GWAS, respectively, identifying 
two genomic risk loci with two independent lead SNPs for S1 and 
15 genomic risk loci with 19 lead SNPs for S2 (Fig. 6A and 
Supplementary Tables 9 and 10). The SNP-based heritability esti-
mates for the two subtypes were 0.14 and 0.18, respectively 
(Supplementary Fig. 31). Although the genetic correlation between 
the two subtypes was 0.80 (P = 9.37 × 10−35), the gene annotation of 
these lead SNPs revealed an obvious difference between the two sub-
types. An S1-associated significant SNP at 3q27.2, rs66513933, is in the 
intron of IGF2BP2, and a high concentration is strongly associated 
with low T2DM risk.33 Other risk loci in S1 at 10q25.2-q25.3 with three 
independent significant SNPs were in the intron of TCF7L2, the most 
potent locus for T2DM.34 Almost all the genes associated with the 
lead SNPs of S2 were previously reported to be associated with 
T2DM, including IGF2BP2 and TCF7L2. For example, GCKR is a 
hepatocyte-specific inhibitor of the glucose-metabolizing enzyme 
glucokinase35; IRS1 plays a critical role in insulin-signalling path-
ways36; a paralogue of ELF5A2 is associated with T2DM37; CDKAL1 is 
involved in misfolded insulin, leading to oxidative and endoplasmic 
reticulum stress in pancreatic β cells38; JAZF1 directly and negatively 
regulates insulin gene transcription39; a loss-of-function of SLC30A8 
protects against T2DM40; HHEX is repeatedly associated with 
T2DM41; KCNQ1 is highly associate with the risk of T2DM42; ARAP1 
is located near risk alleles for T2DM43; and HMG20A is key to the func-
tional maturity of islet β cells.44 The consistency between our results 
and these reported associations indicated the reliably of our GWAS 
results for the two subtypes. Meanwhile, the large difference between 
the GWAS of S1 and S2 showed the different genetic sources of the 
two subtypes, suggesting the rationality of our subtyping results 
with SuStaIn, which forms a foundation for the genetic association 
with brain health.

Genetic associations between preclinical-type 2 
diabetes mellitus subtypes and brain health

We examined the genetic correlation between the two 
preclinical-T2DM subtypes and brain health using LDSC. Both sub-
types showed significant genetic associations with various brain 
disorders, including depression disorder and stroke. Notably, S1 ex-
hibited significant genetic associations with anorexia nervosa and 
schizophrenia, whereas S2 showed significant genetic associations 
with epilepsy (Fig. 6B). These subtype-specific genetic associations 
of different diseases reveal different genetic risks in brain disor-
ders. For cognitive traits, we observed strong correlations between 
fluid intelligence and reasoning for both subtypes, alongside 

significant correlations between numeric memory and S1 
(Supplementary Fig. 32), and between prospective memory and S2.

Next, we identified the shared causal variant between the two 
subtypes and brain disorders via Bayesian colocalization analyses. 
Our results revealed that S1 has significant colocalization with bi-
polar disorder at SNP rs9834970 [Fig. 6C; posterior probability of hy-
pothesis 4 (PPH4) = 0.89]. These findings from genetic associations 
further indicate the genetic distinctions between the subtypes in 
relation to different brain disorders, highlighting the importance 
of considering subtype-specific genetic profiles in understanding 
the pathogenesis of these complex conditions.

Mendelian randomization for the preclinical-type 2 
diabetes mellitus subtypes with brain disorders

In light of the robust associations uncovered through phenotypic and 
genetic analyses, we expanded our inquiry using two-sample MR ana-
lyses to explore the underlying causal link between preclinical-T2DM 
subtypes and brain disorders. By leveraging instrumental variables 
(IVs) derived from GWAS summaries of the two subtypes, we identi-
fied two IVs for S1 and 20 IVs for S2 (Supplementary Tables 12 and 
13). Following correction for multiple testing using an FDR threshold 
of P < 0.05, we discerned significant causal relationships for both sub-
types with stroke (Fig. 6D). Notably, several types of MR analysis sup-
ported the causal association between S2 and these diseases above, 
while only one MR analysis, inverse variance weighted, for S1, indi-
cated there still were some differences between the causal relation-
ship identified. Additionally, we conducted an MR Egger intercept 
test for S2 to assess the presence of horizontal pleiotropy as applic-
able, which could potentially bias the causal estimates. The results 
of the test did not indicate significant horizontal pleiotropy (MR 
Egger P > 0.05), suggesting that the MR findings for S2 are robust and 
unbiased (Supplementary Data 16).

Disease progression prediction using the identified 
preclinical-type 2 diabetes mellitus subtypes

Finally, we utilized survival analysis to assess the progression of vari-
ous diseases in relation to the two preclinical-T2DM subtypes. 
Survival curves illustrated differences in disease progression relative 
to each subtype (Fig. 7). S1 exhibited faster progression and a higher 
risk for anxiety disorder, bipolar disorder, depression disorder, and 
sleep disorder compared with S2 (Fig. 7A–D). Conversely, S2 was asso-
ciated with slightly faster progression in neurodegenerative disor-
ders, such as Alzheimer’s disease and Parkinson’s disease, and a 
slightly higher risk for stroke (Fig. 7E and F and Supplementary Fig. 
38). These findings align closely with the phenotypic associations 
previously identified, further revealing the distinct pathophysiologic-
al trajectories of each subtype. Of note, the three survival curves of S1, 
S2 and healthy controls exhibited an initial rapid decline followed by 
a slowdown towards the end of the follow-up period concerning most 
comorbidities (Fig. 7 and Supplementary Figs 33–38). This observation 
is primarily attributed to the rapid increase in censoring events, sug-
gesting that the observed effects become less pronounced.

Moreover, we evaluated whether the preclinical-T2DM subtypes 
as biomarkers could enhance the accuracy of disease progression 
predictions. A baseline model using 18 clinical indicators was en-
hanced by incorporating information specific to each subtype. The 
predictive performance was evaluated using the Concordance 
Index (C-Index). Our results indicated that the inclusion of subtype 
information could enhance the prediction accuracy for both disease 
onset and its complications (Supplementary Fig. 39).
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Figure 6 Genetic profiles and associations for the preclinical-type 2 diabetes mellitus subtypes with brain health. (A) The Miami and quantile-quantile 
(Q-Q) plot of genome-wide association study (GWAS) results for the two preclinical-type 2 diabetes mellitus (T2DM) subtypes. The dashed line indicates 
the significance level (P < 10−08). Regions in a sidling window size of 500 kb around the lead single nucleotide polymorphisms (SNPs) are highlighted in the 
plot. Genes annotated for lead SNPs are marked in each region on the GWAS plot. The genomic control lambda (λGC) on the Q-Q plot is used to assess the 
degree of inflation in test statistics due to potential population stratification. A value of λGC close to 1 indicates no significant bias from population strati-
fication. (B) Genetic correlations between subtypes and brain disorders. Results that passed the significance threshold adjusted by the 
Benjamini-Hochberg procedure to control the false discovery rate (FDR) at the 5% level (FDR adjusted P-value < 0.05) are marked in the plot. 
(C) Significant colocalization results between subtypes and diseases (PPH4 > 0.75). (D) Genetic causal effects estimated by Mendelian randomization 
(MR) analyses of subtypes on brain disorders. We employed the inverse variance weighted (IVW) method for Subtype 1 with two SNPs as instrument vari-
ables and another four MR methods, MR Egger (Egger), MR-RAPS (RAPS), weighted median (WMed) and weighted mode (WMod) for Subtype 2 with 20 SNPs 
as instrument variables. Results that passed the significant threshold adjusted by the Benjamini-Hochberg procedure to control the FDR at the 5% level 
(FDR adjusted P-value < 0.05) are marked with asterisks. AD = Alzheimer’s disease; AN = anorexia nervosa; ANX = anxiety disorder; BD = bipolar disorder; 
DEP = depression disorder; EP = epilepsy; MS = multiple sclerosis; OCD = obsessive compulsive disorder; PD = Parkinson’s disease; SCZ = schizophrenia; 
SD = sleep disorder; STK = stroke.
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Discussion
In this study, we uncovered the distinct subtypes and stages of 
preclinical-T2DM by using a cohort of 20 277 UK Biobank participants. 
Utilizing the machine learning algorithm SuStaIn,8 we demonstrated 
that the heterogeneous progression of preclinical-T2DM can be deli-
neated by two distinct trajectories. Both subtypes exhibited different 
illness durations, biomarker profiles, brain health and signatures.

Our analysis confirms the robustness and distinctiveness of the 
two identified subtypes. To verify the stability of our results, we ap-
plied a more stringent cutoff on subtype assignment and excluded 
subjects with a subtype assignment probability of less than 60%. We 
observed that the metabolic profiles of the two subtypes remained 
consistent, with no notable changes observed (Supplementary 
Table 4). Furthermore, we tested whether the two subtypes could be 
replicated using only median values of HbA1c and BMI. The results 
showed that using these two indicators alone failed to capture 

the differences between the subtypes across other biomarkers 
(Supplementary Tables 5and 6). We also showed that there was no sig-

nificant negative correlation between HbA1c and BMI in the 

preclinical-T2DM population (Supplementary Fig. 18). These finding 

further suggests that the two subtypes are not simply defined by 

‘BMI’ or ‘glycaemic’ profiles but are associated with a variety of bio-

markers, reflecting more complex underlying mechanisms.
S1, characterized by a higher leptin and lower leptin receptor 

phenotype, demonstrates elevated levels of BMI, alanine aminotrans-

ferase, LDLc and C-reactive protein. S1 had the highest circulating lep-

tin and lowest circulating leptin receptors among the healthy control 

and participants with preclinical-T2DM (Fig. 4H and I). Subjects with 

leptin resistance have also slightly improved LDLc levels in the blood 

(Fig. 2H), which is revealed in S1. It is worth noting that leptin- 

deficiency is the main cause of massive obesity because of both hyper-

phagia and decreased energy expenditure.45-47 Leptin plays a crucial 

Figure 7 Survival curves for disease progression grouping by two preclinical-type 2 diabetes mellitus subtypes. We illustrate six selected diseases that 
demonstrated distinct progression rates over the years among the three groups: Subtype 1 (S1), Subtype 2 (S2) and the control group. Cox regression 
models were used to estimate the survival rates over time for each subtype, accounting for potential covariates such as age and sex, smoking status, 
alcohol drinking status, income level and education attainment. Survival curves of other diseases are illustrated in Supplementary Figs 32–37. (A–D) 
Diseases that showed a faster progression rate in S1 compared with S2 and the control group. (E and F) Diseases that showed a faster progression rate in 
S2 compared with S1 and the control group. The tables below the survival curves present the number of subjects currently at risk (not progressed to the 
specific disease or censored) and the cumulative number of subjects who had an event (progressed to the specific disease) for each group, correspond-
ing to time (years) (x-axis).
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role in regulating insulin synthesis and secretion from pancreatic β 
cells, thereby influencing insulin sensitivity, hepatic glucose produc-
tion and glucagon levels.48,49 Previous studies have indicated a correl-
ation between leptin resistance and obesity, abnormal cholesterol 
levels and heightened risks of psychiatric disorders.50-52 Our findings 
not only confirmed these associations but also shed light on the piv-
otal role of leptin in the initiation and advancement of T2DM. On 
the contrary, S2 showed higher levels of HbA1c and glucose (Fig. 2D
and Table 1). Notably, S2 exhibited a higher proportion of males and 
a shorter time interval to the onset of T2DM than S1 (Table 1). 
Additionally, the biomarker trajectories differed between the sub-
types (Fig. 2E–J and Supplementary Figs 5–16). For instance, glucose 
and HbA1c levels escalated more rapidly for S2 than S1 over time 
(Fig. 2E and F), whereas BMI levels increased more swiftly for S1 
than S2 during the progression of both subtypes (Fig. 2G). These factors 
may be caused by a reduced capacity for insulin utilization in partici-
pants with S1. However, it is intriguing to note that the progression 
curve for the triglyceride-glucose index in S1 initially exceeded that 
in S2, but the latter rose rapidly and eventually surpassed the former 
during the progression of preclinical-T2DM (Fig. 2I). This suggested 
that S1 may not represent a typical insulin-resistant form of T2DM. 
From a genetic standpoint, S2 manifested more significant genetic as-
sociations than S1, with noticeably stronger signals (Fig. 6A). Several 
identified genetic loci, such as GCKR and IGFI, have been identified 
as associated with insulin insensitivity.53,54 These findings suggested 
that, while S2 is a T2DM genetic-relevant subtype, S1 is more complex 
and based on multiple traits that may share common upstream clin-
ical determinants, e.g. leptin resistance. These findings demonstrated 
the biological plausibility of distinct subtypes of preclinical-T2DM.

We found preclinical-T2DM influenced the structures and func-
tions of the brain. The cumulative damage associated with diabetes 
can affect brain health, and we propose that the early susceptibility 
of neurobiological structures to metabolic stresses may facilitate 
the early onset of this damage. Consequently, these structural 
changes in the brain may result in functional impairments. To quan-
tify the associations between preclinical-T2DM and brain health, we 
analysed brain MRI data from 935 individuals in the UKB. A few dis-
tinct brain regions were affected by each subtype. For example, par-
ticipants with S1 exhibited slightly more atrophy in the putamen and 
accumbens regions, which are primarily associated with emotional 
regulation and motor control. Atrophy in these regions was asso-
ciated with higher risks of anxiety and depression disorders.55,56 In 
contrast, participants with S2 showed slightly more atrophy in re-
gions such as the fusiform gyrus, superior temporal lobe, superior 
parietal lobe and middle temporal lobe, which play an important 
role in language comprehension, visual information processing and 
memory functions.57,58 Atrophy in these regions is more closely asso-
ciated with cognitive decline. Furthermore, the reduction in cortical 
thickness and white matter function was slightly more pronounced 
in S2 (Fig. 5C and D and Supplementary Fig. 29). The atrophy pattern 
observed in S2 may contribute to the slightly increased risk of 
dementia.59-61 Our findings suggested that structural changes in the 
brain could potentially increase the risk of brain disorders. While 
our study specifically focused on the connections between 
preclinical-T2DM and the brain, it is also possible to explore the rela-
tionships between preclinical-T2DM and other human organs and 
systems. Conducting a multisystem analysis using biobank-scale 
data may provide insights into interorgan pathophysiological me-
chanisms and assist in the prevention of T2DM and the early detec-
tion of its effects on human organs.

It is widely recognized that individuals exhibit worsening symp-
toms and face an increased risk of T2DM onset and its complications 

over the course of the illness. Of note, the observed increases in glu-
cose and HbA1c levels were consistent with an increased risk of 
stroke. This finding aligned with existing knowledge regarding the 
crucial role of glucose in cerebrovascular functions and its causal 
link with elevated risks of vascular diseases. In addition, both sub-
types were correlated with a decline in cognitive function, a trend mir-
rored in alterations to brain structure (Fig. 4A–F). Studies have 
indicated that the probability of T2DM patients experiencing a decline 
in cognitive abilities is 1.5–2.0 times higher than that of non-diabetic 
individuals.58,62,63 However, despite the occurrence of cognitive func-
tion impairment during the preclinical stage of T2DM and the irrevers-
ible damage to the brain upon diabetes progression, the adverse 
effects of preclinical-T2DM on cognitive function are often underesti-
mated, even when clinical symptoms are mild or asymptomatic. 
Furthermore, it is intriguing to note that both subtypes showed differ-
ential risks of T2DM and its complications (Figs 3 and 7 and 
Supplementary Figs 33–38). For instance, participants with S1 exhib-
ited higher hazard ratios than those with S2 for psychiatric disorders, 
including depression disorder, anxiety disorder, bipolar disorder and 
sleep disorder. This supports the emerging notion that the presence of 
leptin may serve as a potential indicator of neurotransmitter altera-
tions, subsequently impacting the psychiatric status of individuals 
with preclinical-T2DM S1. Intriguingly, colocalization analysis re-
vealed that genes involved in loci associated with S1 were correlated 
with bipolar disorder (Fig. 6C). These findings may shed light on why 
metabolic exposure generally accelerates brain tissue loss in condi-
tions such as bipolar disorder, depression disorder or other psychi-
atric disorders, despite being a complex neurobiological process. 
Conversely, compared with S1, participants with S2 were associated 
with a slightly increased risk of developing neurodegenerative disor-
ders such as Alzheimer’s disease and Parkinson’s disease. Over the 
past decade, accumulating evidence has suggested a positive associ-
ation between T2DM and dementia.64-67 Our results indicated that 
this link may exist within a subgroup of preclinical-T2DM patients 
(S2). For individuals with S1, there were no discernible differences be-
tween them and healthy controls regarding the risks of Alzheimer’s 
disease and Parkinson’s disease (Fig. 7E and F). Although MR analyses 
suggested no causal associations between Alzheimer’s disease/ 
Parkinson’s disease and preclinical-T2DM (Fig. 6D), our efforts to iden-
tify disease subtypes and their associations with brain disorders were 
conceptual and predominantly relied on accumulating evidence re-
garding the progression of preclinical-T2DM and its impacts on the 
brain, which share biological mechanisms with brain disorders. This 
could potentially aid in the development of cost-effective health 
promotion strategies tailored to this extensive and vulnerable 
population.

The identification of distinct subtypes of preclinical-T2DM opens 
avenues for personalized disease screening and prevention, ultimate-
ly leading to improved patient care and outcomes. It is crucial to ac-
knowledge that the subtypes and stages we identified help to 
delineate the heterogeneity of preclinical-T2DM and link them to spe-
cific treatments, suggesting that predicting clinical outcomes could 
benefit from stratification based on the biological subtypes of 
preclinical-T2DM. To this end, the development of a classifier cluster 
comprising specific subgroups corresponding to each subtype 
demonstrates enhanced performance in predicting the onset of 
T2DM and its complications compared with the model based solely 
on clinical information. Each subtype exhibited unique clinical char-
acteristics and impacts on the brain, underscoring the importance 
of tailored approaches in disease management. Previous studies 
have also suggested the potential benefits of disease risk prediction 
for certain phenotypes of patients based on specific phenotypic or 
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genetic features.9,68,69 While further investigation is warranted on the 
biological mechanisms of the progression of preclinical-T2DM from 
the interorgan perspective, factors such as increases in HbA1c and 
glucose levels, as well as leptin resistance, have consistently shown 
associations with disease onset and brain health. Embracing a per-
spective of stratified prediction models may unveil the underlying 
progressive heterogeneity of the disease and facilitate the adoption 
of more individualized treatment approaches in clinical practice, 
which holds promise for optimizing patient care, enhancing treat-
ment efficacy and ultimately mitigating the burden of T2DM and its 
complications on individuals and healthcare systems alike.

The potential clinical impact of our study is multifaceted. Broadly, 
it aids in dissecting the heterogeneity of preclinical-T2DM into more 
defined metabolic subtypes, with implications for downstream tasks. 
For instance, establishing robust preclinical-T2DM subtypes can en-
hance the accuracy of individualized disease diagnosis and progno-
sis. Furthermore, modelling preclinical-T2DM heterogeneity offers 
novel patient stratification and treatment assessment tools for fu-
ture clinical trials, which are particularly crucial, given the mixed re-
sults and clinical limitations of glucose treatments. Recognizing that 
assessing treatment responses within more homogeneous patient 
subgroups can significantly enhance the efficacy of clinical trials, 
our findings suggest that preclinical-T2DM subtyping and staging 
could improve the ability to identify significant clinical characteris-
tics of T2DM and the differential connections with neurodegenera-
tive diseases and psychiatric disorders, which might otherwise be 
diluted in case-control comparisons due to underlying heterogen-
eity. Lastly, the identified subtypes, being both phenotypically and 
genetically relevant to the brain, serve as reliable prognostic biomar-
kers, thereby facilitating the risk prediction of brain disorders.

There are strengths as well as limitations to this study. Firstly, 
while the SuStaIn algorithm offers estimates of preclinical-T2DM tra-
jectories based on cross-sectional clinical indexes, it is crucial to val-
idate these findings using longitudinal data to authenticate the 
disease progressions over time. Secondly, we identified two distinct 
subtypes from the UKB dataset, each exhibiting different clinical phe-
notypes, neuroanatomical signatures and clinical outcomes. 
Validation using independent discovery and replication cohorts 
would bolster the reliability of these identified subtypes. With the 
availability of large-scale cohorts in studies, there is potential to rep-
licate and validate our findings, particularly in contextualizing the 
proposed subtypes with the brain connectivity, cytoarchitecture, me-
tabolism, neurotransmitter receptors and transporters, gene expres-
sion and cognitive function. Thirdly, although our study indicated a 
connection between preclinical-T2DM S1 and psychiatric disorders, 
the causality remains unclear and deserves further investigation. 
Individuals with psychiatric disorders may exhibit abnormal meta-
bolic levels, potentially due to the poor lifestyle factors associated 
with the disorder.70,71 Additionally, these conditions may not have 
been diagnosed at the time of blood collection, potentially confound-
ing the interpretation of the relationship between preclinical T2DM 
and psychiatric disorders. Finally, while clinical biomarkers and gen-
etics can influence the progression of individuals within the preclin-
ical stage of T2DM, the risk factors characterizing the clusters 
identified in our study were also shaped by behavioural, environmen-
tal and dietary determinants, as well as the use or non-use of medi-
cations that lower risk factor levels. Future research integrating these 
determinants with clinical data is necessary to understand their con-
tributions to the prevalence and trends in preclinical-T2DM subtypes 
and their impact on brain health.

In summary, our study identified two distinct and stable sub-
types of preclinical-T2DM based on cross-sectional clinical data 

encompassing 18 clinical indexes. These subtypes demonstrated 
varied associations with brain health. Untangling the underlying 
mechanisms of abnormal glucose and lipid metabolism implicated 
in neurodegenerative diseases and psychiatric disorders requires 
further fundamental and experimental research. Nevertheless, 
the results clearly demonstrate the critical necessity of monitoring 
and addressing the brain health needs of individuals in the preclin-
ical stage of T2DM.
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