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C O M P U T E R  S C I E N C E

Genetically supported targets and drug repurposing for 
brain aging: A systematic study in the UK Biobank
Fan Yi1, Jing Yuan2, Judith Somekh3, Mor Peleg3, Yi-Cheng Zhu2*, Zhilong Jia4*,  
Fei Wu1*, Zhengxing Huang1*

Brain age gap (BAG), the deviation between estimated brain age and chronological age, is a promising marker of 
brain health. However, the genetic architecture and reliable targets for brain aging remains poorly understood. In 
this study, we estimate magnetic resonance imaging (MRI)–based brain age using deep learning models trained 
on the UK Biobank and validated with three external datasets. A genome-wide association study for BAG identi-
fied two unreported loci and seven previously reported loci. By integrating Mendelian Randomization (MR) and 
colocalization analysis on eQTL and pQTL data, we prioritized seven genetically supported druggable genes, in-
cluding MAPT, TNFSF12, GZMB, SIRPB1, GNLY, NMB, and C1RL, as promising targets for brain aging. We rediscov-
ered 13 potential drugs with evidence from clinical trials of aging and prioritized several drugs with strong 
genetic support. Our study provides insights into the genetic basis of brain aging, potentially facilitating drug 
development for brain aging to extend the health span.

INTRODUCTION
Delaying aging is an efficient approach to forestall disease and ex-
tend health span, and a 2% delay in aging could lead to health care 
cost savings of $7.1 trillion over 50 years (1, 2). A growing amount 
of evidence suggests that brain aging, a key ingredient of human ag-
ing, is associated with decreased mental and physical fitness and 
with an increased risk of neurodegeneration and mortality (3). 
There is a general consensus that the trajectories of brain aging differ 
substantially among individuals due to differences in genetic factors, 
lifestyles, environmental factors, and chronic diseases of the patient 
(4). In this sense, the brain age gap (BAG), the difference between 
the estimated brain age and chronological age of a subject, may pro-
vide a promising indicator of aging-related brain function. Elucidat-
ing genetic factors explaining the BAG may identify the genetically 
supported targets and facilitate potential therapeutic opportunities 
to prevent, slow down, or even reverse brain aging, probably extend-
ing the health span of individuals (5, 6).

Brain aging can be revealed by magnetic resonance imaging 
(MRI) of individuals (7), and machine learning models developed 
on MRIs for brain biological age estimation have surged in the past 
few decades (8, 9). These models mainly used MRI scans of cogni-
tively healthy participants, combined with supervised learning algo-
rithms, such as simple fully convolutional network (SFCN) (10, 11), 
VGGNet (11–13), EfficientNet (14), DenseNet (15), global-local 
transformer (GLT) (16), and ResNet (17–19), to train a regression 
model between the extracted brain imaging embedding features and 
the subject’s chronological age (17). Then, the learned model can be 
applied to independent MRI test data to infer the brain age of 
unseen subjects. Furthermore, genetic factors have been investigated 
to understand the underlying cause of BAG from multiple per-
spectives (4, 17, 20–23). Previous genome-wide association studies 

(GWASs) for BAG have identified a set of associated genes (17, 22–
26), including Microtubule Associated Protein Tau (MAPT), in-
volved in modulating the stability of axonal microtubules, and 
Runt-related transcription factor 2 (RUNX2), involved not only in 
regulation of bone cell differentiation and cell proliferation but also 
in hippocampal functions such as learning and memory (27). Also, 
the heritability of BAG, as estimated with single-nucleotide poly-
morphisms (SNPs) using linkage disequilibrium (LD) score regres-
sion (LDSC) (28), is ~0.2 (17,  25). A recent study attempted to 
uncover the causal relations between BAG and common brain dis-
orders using Mendelian randomization (MR) (4). Their analysis in-
dicated weak evidence of a causal influence of Alzheimer’s disease 
(AD) and bipolar disorder (BIP) on higher BAG.

Although existing studies emphasize the polygenic architecture 
of brain aging, genetically supported drug target studies of brain ag-
ing, as a tool to anticipate the effect of drug action on brain aging, 
are incredibly lacking (29). Identifying BAG-associated loci could 
provide a resource for reasoning targets of abnormal brain aging. 
Wen et al. (22, 23) explored the relevance of BAG to diseases and 
identified potentially repositionable drugs for aging-related diseases 
directly using GWAS identified genes and their associated drug-
disease networks. Rosoff et al. (30) identified drug targets for healthy 
aging via MR for clinical biomarkers and risk factor using multi-
variate GWAS. As reported in the ChEMBL database (31), there are 
45 drugs in clinical trials related to aging. Partridge et al. (32) and 
Kulkarni et al. (33) have systematically reviewed the most promising 
agents to maintain health for longer periods and to slow down ag-
ing. These include drugs for managing diabetes [Sodium/Glucose 
cotransporter 2 (SGLT)-2 inhibitors, metformin, and acarbose], 
mammalian target of rapamycin (mTOR) inhibitors (rapamycin and 
its analogs), drugs for management of hypertension (angiotensin-
converting enzyme inhibitors and angiotensin receptor blockers), 
and nonsteroidal anti-inflammatory drugs. A genetically supported 
drug target MR analysis can benefit in inferring whether and, in cer-
tain cases, in what direction a drug that acts on the protein (whether 
an antagonist, agonist, activator, or inhibitor) will alter brain aging. 
Finan et al. (34) redefined the druggable genes as whose encoded 
proteins are extracellular proteins, or targeted by drugs or drug-like 
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molecules (licensed or in clinical phase), and grouped them into 
three tiers of druggable genes, corresponding to their positions in 
the drug development stages. Effective yet unexploited drug targets 
might exist for the prevention or treatment of accelerated brain ag-
ing, and they could be identified through their causal associations 
with proteins in blood or brain tissues.

This study systematically investigates the genetic architecture of 
brain aging and identifies a set of druggable targets (34) by assessing 

their causal relevance for BAG (Fig. 1). We began by estimating 
brain age using seven state-of-the-art deep learning models, using 
MRI data from 38,961 UK Biobank (UKB) (35) participants and 
validating these models on three external datasets. The three-
dimensional vision transformer (3D-ViT) (36) model outperformed 
others in brain age estimation and was used to measure BAG in sub-
sequent analyses. Next, we conducted GWAS on genetic data from 
31,520 UKB individuals to identify genomic regions associated with 

Fig. 1. Study design. (A) Brain age estimation: We trained seven deep learning models for brain age estimation using the UKB dataset on 29,097 healthy participants, 
validated using 3227 healthy and 6637 brain disorder subjects, In addition, we performed external validation using MRI data from 1627 CN subjects from ADNI, 259 
healthy participants from PPMI, and 313 healthy participants from IXI. Models were evaluated using the four metrics: MAE, MSE, R2, and Pearson R. (B) GWASs for BAG: We 
conducted a series of GWASs on 31,520 healthy participants with genotypes data from UKB, excluding brain disorder subjects to avoid confounding effects. These studies 
aimed to investigate the genetic basis of BAG, considering both continuous values and BAG within case-control groups. (C and D) Causal effects of BAG: To uncover po-
tential health impacts of BAG, we conducted genetic correlation and Mendelian Randomization (MR) to investigate the causal effect of BAG on 18 brain disorders and 
eight phenotypic traits. CI, confidence interval. (E) Drug-target MR and colocalization for identifying druggable genes: We performed cis-MR and colocalization analysis 
using cis-eQTL to identify genes whose expression is associated with BAG. We found 64 druggable genes that could serve as potential therapeutic targets. (F) Further 
validation of BAG-associated genes: pQTL-based MR and colocalization further prioritized seven targets with strong genetic evidence. (G) Phenome-wide scan for the 
BAG-associated druggable genes: To explore the broader effects of the 64 identified druggable genes, we conducted a comprehensive phenome-wide scan to investigate 
their potential associations with 44 different traits to uncover potential therapeutic implications beyond brain aging. (H) Drug repurposing for brain aging: We explored 
the potential for repurposing existing drugs for the treatment of brain aging.
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BAG. Through MR and genetic association analyses, we explored 
the relationships between BAG and 18 brain disorders, as well as 
eight phenotypic traits. Although most causal relationships were 
nonsignificant, we identified a significant causal effect of BAG on 
intelligence. We then identified 64 druggable genes using “drug tar-
get MR” (37–39) and colocalization analysis with eQTL and pQTL 
data. Seven druggable genes—MAPT, TNFSF12, GZMB, SIRPB1, 
GNLY, NMB, and C1RL—emerged as strong causal candidates for 
brain aging. A phenome-wide scan further explored their associa-
tions with 44 additional traits, helping to rationalize these targets. 
Inspired by Finan’s work (34), we performed drug repurposing and 
identified 13 potential drugs, supported by clinical trial evidence on 
aging, which target the identified druggable genes. Our integrated 
pipeline—combining multimodal (MRI and omics) data, deep 
learning, MR, and colocalization analyses—provides a comprehen-
sive framework for identifying druggable targets for brain aging and 
could aid in the translation of these findings into drug development 
for brain aging.

RESULTS
UKB participants with MRI data
We collected a total of 38,961 subjects with their T1-weighted MRI 
data from UKB, consisting of 32,324 non-brain disorder subjects 
and 6637 subjects recorded with brain damage or neurodegenera-
tive and psychiatric disorders. These MRI data have been prepro-
cessed and registered to the MNI152 standard space. On average, 
the enrolled subjects were 64 (SD 7.65) years old, and 20,417 
(52.54%) were women. Subjects with brain damage and brain disor-
ders mainly consists of 32 patients with AD, 81 patients with Parkinson’s 
disease (PD), 132 with demyelination (DEM), 1152 with anxiety 
disorder (ANX), 1404 with major depressive disorder (MDD), 72 
with BIP, 17 with obsessive-compulsive disorder (OCD), 21 with 
post-traumatic stress disorder (PTSD), 23 with schizophrenia (SCZ), 
432 with cerebral vascular accident (CVA), 261 with epilepsy (EP), 
600 with sleeping disorder (SLD), and the remaining with other 
types of brain disorders. Information on brain disorders was ex-
tracted based on the main diagnosis of the International Classifica-
tion of Diseases, 10th Revision (ICD-10) from UKB (table S1).

3D-ViT outperforms other models in MRI-based brain 
age estimation
We used T1-weighted MRI data from UKB, consisting of 29,097 
subjects without any brain disorders, to estimate brain age. We used 
seven state-of-the-art deep learning models, namely, SFCN, ResNet, 
EfficientNet, VGGNet, DenseNet, GLT, and 3D-ViT, whose neural 
network structure is shown in Fig. 2A. Among these models, 3D-
ViT, we proposed to be applied in brain age estimation, demonstrated 
the highest performance in brain age estimation in terms of four 
regression metrics: mean absolute error (MAE), mean squared error 
(MSE), R-squared (R2) score, and Pearson correlation coefficient (r) 
(Fig. 2B). Specifically, the overall performance of 3D-ViT, measured 
by fivefold cross validation, exhibited an overall performance with a 
MAE of 2.64 and r value of 0.90 on the training data (Fig. 2, B and 
C, and fig. S1, A to E). When evaluating the independent testing 
dataset, consisting of 3227 healthy participants and 6637 patients 
with brain disorders, 3D-ViT consistently achieved favorable re-
sults. For healthy participants, it yielded a MAE of 2.60 and a 
Pearson r value of 0.91 (Fig. 2D). In subjects with brain disorders, 

3D-ViT demonstrated a significantly higher MAE of 2.78 (P  = 
2.53 × 10−43 for BAGs compared with healthy participants) and a 
Pearson r value of 0.89 (fig. S1F). Furthermore, the MAE remained 
consistent when analyzing the sex-separated dataset. Specifically, for 
the training data, the MAE was 2.58 for females and 2.71 for males, 
whereas for the testing data, it was 2.63 for females and 2.82 for 
males (fig. S2).

External validation confirms robustness for the 
3D-ViT model
To demonstrate the generalizability of the used BAG estimation 
model, we conducted external validation using healthy partici-
pants extracted from three additional datasets: Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (N  =  1627), Information 
eXtraction from Images (IXI) (N = 313), and Parkinson’s Progres-
sion Markers Initiative (PPMI) (N = 259). The six models trained 
on the UKB dataset were fine-tuned on the output layer for each 
external validation dataset. As a result, 3D-ViT consistently out-
performed the other six models and obtained remarkable perfor-
mance on the external validation datasets (Fig. 2B). Specifically, on 
the ADNI dataset, 3D-ViT achieved a MAE of 2.99 and a Pearson 
r value of 0.76 (Fig. 2E and fig. S3). On the PPMI dataset, it 
achieved a MAE of 3.44 and a Pearson r value of 0.91 (fig. S4). Last, 
on the IXI dataset, 3D-ViT achieved a MAE of 3.61 and a Pearson 
r value of 0.85 (fig. S5). Given its superior performance on both 
UKB and external validation datasets, 3D-ViT was selected as the 
optimal model for estimating BAG, which was then used in the 
subsequent analyses.

Brain disorders, cognition, and lifestyle factors reveal 
BAG differences
We observed a significant difference in BAG between subjects with 
brain disorders and healthy participants in the UKB dataset (Fig. 
2F). Specifically, subjects with AD (average BAG = 2.59, P = 5.00 × 
10−6), DEM (3.69, P = 2.05 × 10−38), and SCZ (2.12, P = 0.0015) 
exhibited larger discrepancies in BAG, indicating the reliability of 
our model from another perspective because subjects with brain 
disorders tend to have a larger BAG, as expected. In addition, we 
identified significant changes in most cognitive scores of the cog-
nitive function tests with the increases of BAG (fig. S6), further 
demonstrating the reliability of the proposed brain age estimation 
model. Furthermore, our findings revealed that males, smokers, and 
individuals with either higher or lower body mass index (BMI) tend 
to have a greater BAG compared to females, nonsmokers, and indi-
viduals with a normal BMI, respectively (fig. S7).

Saliency maps identify key brain regions for BAG estimation
We used the 3D-ViT model and conducted an analysis to identify 
the most influential neuroimaging signatures of T1-MRI in brain 
age estimation. To accomplish this, we used saliency maps to high-
light the contribution and relevance of each brain region in differen-
tiating subjects based on BAG. Our findings revealed interesting 
insights about the relevance of specific brain regions in estimating 
the biological age of subjects. The lentiform nucleus and posterior 
limb of internal capsule regions showed notable relevance for esti-
mating the brain biological ages of subjects (Fig. 2G). We also ob-
served weak correlations in the thalamus, corpus callosum, and 
caudate nucleus regions (Fig. 2G), indicating that these regions may 
be associated with brain aging.
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Fig. 2. Brain age estimation. (A) Overall neural network structure of the proposed 3D-ViT for brain age estimation, consisting of input layer, patch embedding, position 
embedding, triple transformer encoder, sum pooling, and fully connected layers. (B) Performance comparison of the seven models for brain age estimation on four regres-
sion metrics. (C to E) Brain age estimation performance on non-brain disorder subjects (green dots) in the training, testing data of the UKB dataset, and external validation 
on the CN subjects (green dots) in the ADNI dataset. (F) Statistical comparison of BAG distribution between subjects with 12 different brain diseases and subjects without 
any brain disorders in the UKB dataset. (G) Saliency maps of brain regions of participants without any brain disorders, from slices in three directions: sagittal, coronal, and 
axial. Saliency maps were calculated based on the voxel-wised gradient of the test data with darker red representing more important regions. The lentiform nucleus and 
posterior limb of internal capsule regions were highly relevant. AD, Alzheimer’s disease; ANX, anxiety disorder; BIP, bipolar disorder; CVA, cerebral vascular accident; DEM, 
demyelination; EP, epilepsy; MDD, major depressive disorder; OCD, obsessive-compulsive disorder; PD, Parkinson’s disease; PTSD, post-traumatic stress disorder; SCZ, 
schizophrenia; SLD, sleep disorder.
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GWASs reveal genetic loci associated with brain aging
We conducted a series of GWASs for brain aging, including BAG 
with continuous values and BAG categorized into case-control groups 
(i.e., BAG > μ versus BAG ≤ μ and BAG < −μ versus BAG ≥ −μ, 
where μ = 1, 2, 3, 4, and 5 years, respectively, and the highest 25% of 
BAG versus the lowest 25% of BAG). The genotyped data was avail-
able for 31,520 subjects without any brain disorders in the extracted 
UKB dataset. To evaluate the statistical power of each GWAS, we 
calculated genetic heritability by LDSC, the number of indepen-
dent genome-wide-significant loci, and other statistics. Our findings 
revealed that GWAS using BAG with continuous values exhibited 
the highest statistical power among all GWASs we implemented 
(figs. S8 to S20, and table S2). Hence, we chose to use the obtained 
GWAS results using BAG with continuous values of BAG for subse-
quent analyses.

We identified nine independent lead SNPs in eight genomic loci 
that exhibit significant associations with continuous BAG (Fig. 3, A 
and B; figs. S21 to S29; and table S3). The genomic inflation factor 
(λ) is 1.09, indicating no substantial genomic inflation (Fig. 3B). The 
identified SNPs were annotated using Ensembl Variant Effect Pre-
dictor (40), as shown in data S14. Our study replicated previously 
reported BAG-associated genes, such as RUNX2, INPP5A, CRHR1, 
and PICK1, and identified unreported associated genes, such as 
TP53 and NKX2-2. In the GWAS results, a high LD block (Fig. 3A 
and table S3) located at the 17q21.31 polymorphism highlighted 
significant genomic regions related to brain aging. For example, 
CRHR1, with the lead SNP rs62056932 at 17q21.31 (Fig. 3C and fig. 
S26), plays a crucial role in synaptic loss and memory deficits 
(41, 42), whereas NSF (lead SNP rs199534 at 17q21.31; fig. S27), a 
vesicle-fusing ATPase (adenosine triphosphatase), is associated 
with AD (43). Most of them are highly expressed in brain tissues 
(Fig. 3D). In addition, previously reported associations with BAG 
were observed for genes such as RUNX2 (lead SNP rs2819861; Fig. 
3C and fig. S22), KLF3 (lead SNP rs13144836 at 4p14; fig. S21), 
PICK1 (lead SNP rs738443 at 22q13.1; fig. S29), and INPP5A (lead 
SNP rs35831787 at 10q26.3; fig. S24) (4, 17). Notably, we identified 
two previously unreported associations between TP53, NKX2-2, 
and BAG. TP53 (lead SNP rs62062581 at 17p13.1, P = 9.82 × 10−9; 
Fig. 3C and fig. S25) has been associated with brain aging in zebra 
fish (44), and modulation of the p53-MDM2 axis has been linked to 
aging (45). NKX2-2 (lead SNP rs73129833 at 20p11.22, P = 8.43 × 
10−10; fig. S28), a transcription factor, plays critical role in in the 
maintenance of glucose tolerance and β cell function (46). Further-
more, the distinct expression patterns of the identified genes across 
the 54 tissue types from the GTEx v8 project (Fig. 3D) reinforced 
the understanding that BAG involves coordinated physiological 
processes in both the brain and peripheral systems, corroborating 
previous findings by Leonardsen et al. (4).

BAG shows limited causal associations with 
brain disorders/traits
We investigated the genetic heritability of BAG and the genetic cor-
relations between BAG and both 18 brain disorders (which encom-
passed neurodegenerative disorders, psychiatric disorders, stroke, 
etc.) and eight phenotypic traits using LDSC with their GWAS sum-
mary results (figs. S30 and S31). The total SNP heritability (h2) esti-
mate for BAG was 0.186 (SE  =  0.026; table S2). We observed a 
nominal genetic correlation between BAG and stroke (r  =  0.17, 
SE = 0.074, P = 0.025, FDR-corrected P = 0.27) and small vessel 

stroke (r =  0.27, SE =  0.12, P =  0.033, FDR-corrected P =  0.27). 
However, no significant associations were detected after false dis-
covery rate (FDR) correction.

Then, we conducted a bidirectional two-sample MR analysis to 
explore the causal direction and effect between BAG and 18 com-
mon brain disorders using five different MR methods. In the for-
ward MR analysis (i.e., BAG as exposure), we observed slightly 
causal effects of BAG on PD and Tourette syndrome (TS) (fig. S32). 
In the reverse MR analysis (i.e., brain disorders as exposure), we 
observed causal effects of multiple sclerosis (MS) and AD on BAG 
(fig. S33). However, none of them exhibited significant correlations 
after FDR correction (figs. S32 and S33). Moreover, we performed a 
bidirectional two-sample MR analysis to examine the causal direc-
tion and effect between BAG and eight phenotypic traits using five 
different MR methods (figs. S34 and S35). Our findings revealed sig-
nificant causal effects of BAG solely on intelligence among all 
phenotypic traits, whereas nonsignificant causal effects of these 
phenotypic traits on BAG were observed.

Cis-eQTL analyses identify 64 potential druggable 
genes for BAG
We conducted a comprehensive cis-MR analysis by integrating 
GWAS summary data for BAG with cis-eQTL data, consisting of 
blood eQTLs from eQTLGen and brain tissue eQTLs from the Psy-
chENCODE consortia. The aim was to prioritize druggable and 
causal genes associated with BAG. After excluding nondruggable 
genes, we identified 2682 druggable genes from blood eQTLs and 
2915 genes from brain tissue eQTLs within a 250-kb range for cis-
MR analysis. Overall, we found that the expression of 64 druggable 
genes was causally associated with BAG (FDR-corrected P < 0.05; 
Fig. 4, A and B, and data S15 and S16), with no evidence of signifi-
cant horizontal pleiotropy. Specifically, 55 genes in blood were caus-
ally associated with BAG, whereas 10 genes in brain tissues were 
associated with BAG. Notably, MAPT showed a significant causal 
effect on BAG in both blood and brain tissues (Fig. 4, A and B). The 
enriched Reactome pathways with the 64 druggable genes include 
programmed cell death, platelet signaling and aggregation, extracel-
lular matrix organization, cell surface interactions at the vascular 
wall, and apoptosis (Fig. 4F).

We performed colocalization analysis to further refine the BAG-
associated targets among the identified causal genes for BAG. This 
analysis was conducted to determine whether the genetic associa-
tions with both gene expression and BAG shared the same causal 
variant. When both MR and colocalization results demonstrated 
significance, it suggested a higher likelihood of the protein being a 
viable drug target (47). Consequently, we identified 22 druggable 
genes (MAPT, NMB, CYP2D6, NOS3, GDF15, ITGAM, TNFRS-
F10A, TUBB, MPL, ALPL, MMP24, TNFSF13, INSL3, HSD3B7, 
FZD3, KLHL24, BMP8B, CELSR2, MUC4, MLKL, TSPEAR, and 
SDR42E1) that were associated and colocalized with BAG (Table 1). 
These genes exhibited compelling evidence of association from both 
MR and colocalization analyses (PPH4 > 0.75; Fig. 4, A and B, and 
data S16 and S17).

pQTL analyses provide further genetic evidence
The application of MR and colocalization analysis using pQTLs al-
lows for the validation of genetically supported targets for brain ag-
ing at the protein level. To this end, we conducted a search for pQTL 
data pertaining to the identified druggable genes in two large-scale 
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Fig. 3. GWAS results for BAG. (A) Manhattan plot for the GWAS on BAG. The x axis represents the chromosomes, whereas the y axis represents the −log10(P) values for 
each genetic variant. The GWAS Manhattan plot displays the lead SNPs in each region, along with their corresponding rs-IDs. Loci with red dots (the two unreported loci 
and the top loci) are zoomed with annotation below. (B) The QQ plot assesses the results of the GWAS conducted on BAG. (C) The region plot showcases the associated 
regions of the lead SNPs. Genes located within each region are depicted below. (D) The heatmap displays the expression levels of the annotated genes across various 
tissues from the GTEx v8 study. The colors indicate the average normalized expression level (with zero mean across tissues) in each tissue.
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Table 1. Evidence supporting the BAG causally associated druggable genes. The listed 41 genes have at least two significant pieces of evidence in xQTL 
(eQTL and pQTL) MR and colocalization analysis (37 genes) or are targeted by potentially antiaging drugs associated with aging-related clinical trials or 
previously reported (4 genes). The genes in the column are ordered according to the number of the pieces of evidence and the number of associated antiaging 
drugs. In terms of druggability tiers, Tier 1 represents proteins associated with approved drugs and drugs in clinical development. Tier 2 includes proteins closely 
related to drug targets or with associated drug-like compounds. Tier 3 comprises extracellular proteins and members of key drug target families. ✔, pass; ✘, fail; 
blank, unable to test; No. drugs, the number of drugs that targeting the genes; No. antiaging drugs, the number of potential antiaging drugs associated with 
aging-related clinical trials or previously reported.

Genes
Drug-

gability 
Tier

Sig. in MR using 
eQTLs

Colocalization with 
eQTL

Sig. in MR using 
pQTLs

Colocalization with 
pQTL No. 

drugs

No. anti-
aging 
drugs

Pieces of 
evidenceBlood Brain 

tissues
Blood Brain 

tissues
Interval deCODE Interval deCODE

﻿MAPT﻿ Tier 1 ✔ ✔ ✔ ✘ ﻿ ✘ ﻿ ✔ 43 6 4

﻿TNFSF12﻿ Tier 1 ✔ ﻿ ✘ ﻿ ✔ ✔ ✘ ✔ 1 0 4

﻿GZMB﻿ Tier 2 ﻿ ✘ ﻿ ✔ ﻿ ✔ ✘ 0 0 3

﻿SIRPB1﻿ Tier 3A ﻿ ✘ ﻿ ﻿ ﻿ ✔ ✔ 0 0 3

﻿GNLY﻿ Tier 3B ✔ ﻿ ✘ ﻿ ✔ ﻿ ✘ ✔ 0 0 3

﻿NMB﻿ Tier 3B ✔ ﻿ ✔ ﻿ ﻿ ﻿ ﻿ ✔ 0 0 3

﻿C1RL﻿ Tier 3B ✔ ﻿ ✘ ﻿ ✘ ✔ ✔ 0 0 3

﻿CYP2D6﻿ Tier 1 ﻿ ✔ ﻿ ﻿ ﻿ ﻿ ﻿ 321 18 2

﻿NOS3﻿ Tier 1 ✔ ﻿ ✔ ﻿ ﻿ ﻿ ﻿ ﻿ 17 2 2

﻿MAPK3﻿ Tier 1 ﻿ ✘ ﻿ ﻿ ✔ ﻿ ✘ 8 2 2

﻿GDF15﻿ Tier 3A ﻿ ✔ ﻿ ﻿ ﻿ ✘ ✘ 5 2 2

﻿ITGAM﻿ Tier 3A ✔ ﻿ ✔ ﻿ ﻿ ﻿ ﻿ ﻿ 9 1 2

﻿TNFRSF10A﻿ Tier 1 ✔ ﻿ ✔ ﻿ ﻿ ﻿ ﻿ ﻿ 1 1 2

﻿TUBB﻿ Tier 1 ✔ ﻿ ✔ ﻿ ﻿ ﻿ ﻿ ﻿ 23 0 2

﻿TG﻿ Tier 3A ✔ ﻿ ✘ ﻿ ﻿ ﻿ ﻿ ✔ 14 0 2

﻿RRM1﻿ Tier 1 ✔ ﻿ ✘ ﻿ ﻿ ﻿ ✘ ✔ 9 0 2

﻿MPL﻿ Tier 1 ✔ ﻿ ✔ ﻿ ﻿ ﻿ ﻿ ✘ 8 0 2

﻿CA4﻿ Tier 1 ✔ ﻿ ✘ ﻿ ﻿ ﻿ ✔ ✘ 7 0 2

﻿NPPA﻿ Tier 1 ✔ ﻿ ✘ ﻿ ﻿ ﻿ ﻿ ✔ 2 0 2

﻿ALPL﻿ Tier 2 ﻿ ✔ ﻿ ✔ ﻿ ﻿ ﻿ ✘ 2 0 2

﻿CDC25B﻿ Tier 2 ✔ ﻿ ✘ ﻿ ﻿ ✔ ﻿ ✘ 0 0 2

﻿CAPNS1﻿ Tier 2 ✔ ﻿ ✘ ﻿ ﻿ ﻿ ﻿ ✔ 0 0 2

﻿MMP24﻿ Tier 3A ✔ ﻿ ✔ ﻿ ﻿ ﻿ ﻿ ﻿ 0 0 2

﻿TNFSF13﻿ Tier 3A ✔ ﻿ ✔ ﻿ ﻿ ﻿ ﻿ ﻿ 0 0 2

﻿A2ML1﻿ Tier 3A ✔ ﻿ ✘ ﻿ ﻿ ﻿ ﻿ ✔ 0 0 2

﻿INSL3﻿ Tier 3A ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿✘﻿  0  0  2

﻿HSD3B7﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿  0  0  2

﻿FZD3﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿  0  0  2

﻿KLHL24﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿  0  0  2

﻿BMP8B﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿✘﻿  0  0  2

﻿CELSR2﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿  0  0  2

﻿MUC4﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿  0  0  2

﻿MLKL﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿  0  0  2

﻿CNP﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✘﻿ ﻿ ﻿ ﻿✔﻿ ﻿ ﻿✘﻿  0  0  2

﻿TSPEAR﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿✘﻿  0  0  2

﻿SDR42E1﻿ Tier 3B ﻿✔﻿ ﻿ ﻿✔﻿ ﻿ ﻿ ﻿ ﻿ ﻿  0  0  2

﻿CD163﻿ Tier 3B ﻿ ﻿✔﻿ ﻿ ﻿✘﻿ ﻿ ﻿ ﻿✘﻿ ﻿✔﻿  0  0  2

﻿FYN﻿ Tier 1 ﻿✔﻿ ﻿ ﻿✘﻿ ﻿ ﻿ ﻿ ﻿✘﻿ ﻿  10  1  1

﻿PRKCD﻿ Tier 1 ﻿✔﻿ ﻿ ﻿✘﻿ ﻿ ﻿ ﻿ ﻿ ﻿  10  1  1

﻿ITGAL﻿ Tier 1 ﻿✔﻿ ﻿ ﻿✘﻿ ﻿ ﻿ ﻿ ﻿ ﻿✘﻿  8  1  1

﻿GPR35﻿ Tier 1 ﻿✔﻿ ﻿ ﻿✘﻿ ﻿ ﻿ ﻿ ﻿ ﻿  3  1  1
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Fig. 4. Cis-MR of genes and proteins on BAG. (A and B) Cis-MR of gene expression and colocalization on BAG by tissue-specific eQTLs. (C) MR and colocalization of the BAG-
associated genes on BAG by plasma pQTLs in INTERVAL and deCODE studies. The x axis represents the MR effect per unit (in SD) change (beta) in gene expression or protein 
level, and the y axis represents the −log10(P value). Genes are colored and annotated in blue if they pass FDR-corrected P value < 0.05 or in red if they are colocalized simultane-
ously. Genes labeled indicate that they have at least two pieces of evidence in the xQTL analyses. P values are truncated at 1 × 10−10 for display purposes. (D) Phenome-wide 
scan of BAG-associated druggable genes. Genes (x axis) are categorized and clustered according to tissue types of eQTLs. The 44 phenotypes were categorized and organized 
into the following groups: neurodegenerative diseases, psychiatric disorders, cerebrovascular diseases, common diseases, biomarkers, and lifestyle factors. Results with a P value 
below the nominal threshold (P < 0.05) are indicated by open diamonds, whereas stars indicate P values that passed FDR correction (FDR P < 0.05). Results are gradient colored 
based on the direction of the MR effect multiplied by −log10(P value). (E) The number of BAG-associated genes affected the 44 phenotypes sin the phenome-wide scan. Gray 
bars indicate total gene counts affecting each phenotype, red bars show positive correlations, and blue bars show negative correlations. (F) Reactome pathway enrichment of 
MR-associated genes. These top 10 significantly enriched pathways are shown (P value < 0.05). Abbreviation: ALP, alkaline phosphatase; AST, aspartate aminotransferase; BMI, 
body mass index; SBP/DBP, systolic/diastolic blood pressure; HbA1c, glycated hemoglobin; HDL-C/LDL-C, high-density/low-density lipoprotein cholesterol; IL-1α/IL-1β, 
interleukin-1α/β; IL-2/IL-6, interleukin-2/6; OCD, obsessive-compulsive disorder; PTSD, post-traumatic stress disorder; T2DM, type 2 diabetes.

D
ow

nloaded from
 https://w

w
w

.science.org on M
arch 12, 2025



Yi et al., Sci. Adv. 11, eadr3757 (2025)     12 March 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

9 of 19

plasma pQTL studies: the INTERVAL study and the deCODE study. 
As a result, we obtained pQTL data for a total of 35 genes (GSTA4, 
MAPT, TSPEAR, BMP8B, A2ML1, NPPA, MAPK3, GDF15, A2M, 
ITGAL, GZMB, CNP, ALPL, ABHD12, CDC25B, MPL, CA4, ALD-
H5A1, GNLY, INSL3, TNFRSF10A, PTPN13, SIRPB1, RAMP3, 
HPD, NMB, C1RL, CAPNS1, CD163, MUC4, RRM1, TNFSF12, TG, 
CDC42BPB, and FYN). Following MR analysis on pQTLs, we ob-
served that six proteins, granulysin (coded by GNLY, beta = 0.08, 
SE  =  0.023, FDR-corrected P  =  0.0030), granzyme B (coded by 
GZMB, beta  =  −0.097, SE  =  0.028, FDR-corrected P  =  0.0039), 
MPIP2 (coded by CDC25B, beta = 0.24, SE = 0.083, FDR-corrected 
P  =  0.041), ERK-1 (coded by MAPK3, beta  =  −0.34, SE  =  0.10, 
FDR-corrected P  =  0.013), CN37 (coded by CNP, beta  =  −0.54, 
SE = 0.19, FDR-corrected P = 0.041), and TNF12, exhibited a sig-
nificant causal effect on BAG (Fig. 4C and data S18). Notably, 
TNF12, coded by TNFSF12, showed consistently significant causal 
effects on BAG in both INTERVAL study and the deCODE studies 
(beta = −0.25, SE = 0.085, FDR-corrected P = 0.013 in INTERVAL 
and beta = −0.28, SE = 0.058, FDR-corrected P = 0.0001; Fig. 4C 
and data S18). Furthermore, 14 proteins (gene symbols: MAPT, 
TNFSF12, GZMB, SIRPB1, GNLY, NMB, C1RL, TG, RRM1, CA4, 
NPPA, CAPNS1, A2ML1, and CD163) displayed strong evidence of 
colocalization. Among them, C1RL and SIRPB1 demonstrated sig-
nificance in the colocalization analysis using both the deCODE and 
INTRVAL pQTLs.

Prioritized druggable genes with strong genetic 
evidence for BAG
Of the 64 druggable genes identified, 37 genes have been supported 
by at least two pieces of evidence in the MR and colocalization anal-
ysis, using the results of BAG GWAS, blood/brain tissue eQTL, and 
plasma pQTL (Table 1 and table S4). Among these, we have further 
prioritized seven druggable genes that exhibit at least three pieces of 
evidence (Table 1), namely, MAPT, TNFSF12, GZMB, SIRPB1, 
GNLY, NMB, and C1RL (Table 1). It is noteworthy that MAPT and 
TNFSF12 are Tier 1 druggable genes, respectively. This strong evi-
dence in the MR and colocalization analysis with xQTLs suggests 
that they may serve as promising candidate targets for brain aging.

Phenome-wide scan extends phenotypic associations of the 
identified targets
We conducted a comprehensive phenome-wide scan using cis-MR 
to investigate the potential effects of the 64 identified druggable 
genes on 44 traits, with the aim of exploring potential opportunities 
for drug development (Fig. 4D and data S21). Our analysis revealed 
frequent associations between these genes and various phenotypes, 
including diastolic blood pressure (DBP), BMI, smoking initiation, 
asthma, systolic blood pressure (SBP), PD, SCZ, AD, and albumin 
levels (Fig. 4E). Specifically, we found that high expression of MAPT 
and CRHR1 was associated with elevated glucose levels, SBP, DBP, 
albumin levels, and apolipoprotein A levels and an increased risk of 
PD. Moreover, high expression of MPL was significantly associated 
with lower SBP and DBP. SIRPB1, when expressed at high levels, 
showed significant associations with insomnia complaints, higher 
interleukin-1α (IL-1α) and lower glucose levels. Similarly, high ex-
pression of C1RL was significantly associated with increased risk of 
OCD, AD, anorexia nervosa, and elevated AST levels while showing 
lower levels of IL-1β and IL-2. High expression of A2ML1 demon-
strated positive associations with glucose, HbA1c, apolipoprotein B, 

IL-6, cholesterol, aspartate aminotransferase (AST), BMI, type 2 
diabetes (T2DM), MS, PD, small vessel stroke, and ischemic stroke. 
Conversely, it showed negative associations with SBP, DBP, hyper-
tension, and asthma.

Drug repurposing reveals 29 candidate drugs for brain aging
Our analysis of MR and colocalization has identified 64 druggable 
genes as potential targets for BAG, suggesting their possible roles in 
anti-brain-aging mechanisms. By using the drug-gene interaction 
database, DGIdb, we have identified 466 drugs that are either ap-
proved or undergoing clinical development, targeting 29 of the 
64 identified genes (Fig. 5A and data S22). Notably, 29 drugs 
(cholecalciferol, diclofenac, didanosine, doconexent, enalapril, esome-
prazole, estradiol, fisetin, glycine, hydrocortisone, ibuprofen, indo-
methacin, ketoprofen, ketorolac, mecamylamine, mefenamic acid, 
methylene blue, naproxen, nicotine, piroxicam, prasterone, querce-
tin, resveratrol, sirolimus, stavudine, sulindac, testosterone, dasatinib, 
and zidovudine) have shown potential in clinical trials for brain ag-
ing, as recorded in ChEMBL or reported by researchers (Figs. 1 
and 5B). Among these drugs, 20 (dasatinib, diclofenac, didanosine, 
enalapril, esomeprazole, fisetin, glycine, ibuprofen, indomethacin, 
ketoprofen, ketorolac, mefenamic acid, methylene blue, naproxen, 
piroxicam, quercetin, sirolimus, stavudine, sulindac, and zidovudine) 
are considered potential geroprotectors, as reviewed by Partridge et al. 
(32) and Kulkarni et al. (33). Thirteen of these drugs (cholecalciferol, 
dasatinib, diclofenac, doconexent, estradiol, hydrocortisone, meca-
mylamine, nicotine, prasterone, quercetin, resveratrol, sirolimus, and 
testosterone) are associated with clinical trials for aging-related in-
dications, as reported in the ChEMBL database.

In the context of brain aging, the prioritization of drug candi-
dates can be based on strong genetic evidence targeting druggable 
genes. In this study, we have identified a total of 432 drugs that target 
15 genes, each supported by at least two pieces of genetic evidence 
(Table 1 and data S22). Among these drugs, 28 of them, targeting 
CA4, MPL, TUBB, and RRM1, exhibit modes of action that align 
with the expected direction of the BAG-delaying effect of the targets 
(Fig. 5B). Specifically, we found that four drugs act as agonists of 
MPL, whereas 6, 6, and 12 drugs function as inhibitors of CA4, 
RRM1, and TUBB, respectively (Fig. 5B and data S22). We argue 
that these 28 drugs hold substantial promise for brain aging.

DISCUSSION
We computationally identify druggable targets for brain aging using 
a large-scale genetic and imaging data. By leveraging a substantial 
amount of T1-MRI data, genome-wide genotypes of individuals 
from UKB, publicly available GWAS datasets of common brain dis-
orders, and xQTLs of druggable genes, this study proposed robust 
models to estimate the brain age, validate BAG as a heritable trait 
and a promising biomarker of brain health, and thereafter system-
atically prioritize potential drug targets for preventing or slowing 
down brain aging.

A promising finding in our study was the clear advantage of using 
a state-of-the-art deep learning model, namely, 3D-ViT, for brain age 
estimation. First, our model demonstrated comparable performance 
through fivefold cross validation using the training MRI data of 
29,097 participants without any brain disorders, suggesting that deep 
learning models have the potential to effectively characterize aging-
related brain changes. Second, our model maintained its performance 
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Fig. 5. Drug repurposing for the BAG-associated drugs. (A) Pipeline of drug repurposing for brain aging using the druggable genes. Targets and repurposed drugs are 
prioritized based on the number of the pieces of genetic evidence and the expected effect direction of mode of action. (B) Network of the BAG-associated targets and 
candidate repositioned drugs for BAG. Druggable genes (blue dots) in Table 1, candidate repositioned drugs (dark blue dots), and reported antiaging drugs (red dots) are 
connected (arrow) based on the drug-gene interaction information queried from DGIdb. The interaction types between drugs and targets are annotated as agonist (blue 
arrow), antagonist/inhibitor/inverse agonist (red arrow), or unknown (gray arrow). The number of the star symbol “*” after the gene names corresponds to the number of 
pieces of evidence. For more detailed information on all identified targets and their associated drugs, please refer to data S22.
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on an independent testing dataset from UKB and three external inde-
pendent testing datasets with fine-tuning, demonstrating the high 
quality of the embedding features learned by the model and its re-
markable generalization capability. Third, we observed significantly 
higher BAG values in subjects with brain disorders compared to the 
healthy group, which aligns with existing knowledge. Fourth, model 
interpretation via the saliency map revealed that different subregions 
of the brain contributed differently to capturing variations related to 
BAG characterization. It also verified the important roles played by 
the lentiform nucleus and posterior limb of internal capsule regions in 
brain aging (48–50), suggesting the reliable extraction of brain aging-
related imaging features. The learned brain imaging features may re-
flect aging-related microstructural alternations in the brain regions, 
such as neuronal loss (51), blood-brain barrier disruption (52), which 
could be a result of pathophysiological changes, and the different 
weights assigned to subregions might further demonstrate their dif-
ferent role in these changes. Last, several genomic loci identified by 
the GWASs for binary groups of BAG replicated previous findings 
from GWAS for continuous values of BAG, including CRHR1 and 
RUNX2 (4, 17). These findings reinforce the validity of the proposed 
deep learning model.

A previous study has indicated that BAG is a heritable and poly-
genic trait with genetic associations to common brain disorders 
(25). BAG has also been reported in cognitive studies, independent 
of patients with neurodegeneration and neuropsychic disorders, 
suggesting that it is an essential marker of cognition function (4). In 
addition to confirming the associations between well-known genes 
like RUNX2, CRHR1, and INPP5A with BAG (4), our study has also 
identified genes, including TP53, that are associated with BAG in 
the context of brain aging. Particularly, the phenotypes of acceler-
ated aging mice, showing chronic p53 activation, could be rescued 
upon p53 deficiency (45), indicating its functional association with 
brain aging. However, further investigation is needed to fully under-
stand the detailed relationship between these factors.

An intriguing question that needs to be addressed is whether 
brain disorders and brain aging have causal effects and, if so, in which 
direction. To accurately identify druggable targets for brain aging, it 
is crucial to mitigate the confounding impact of brain disorders on 
brain aging. In a related study, Leonardsen et al. (4) investigated the 
causal relationships between BAG and five brain disorders, namely, 
PD, AD, MDD, SCZ, and BIP. They discovered a nominally signifi-
cant causal influence of AD and BIP on BAG. Kaufmann et al. (25) 
also found that BAG is increased in several common brain disorders, 
but they have overall weak correlations. Moreover, they argued that 
BAG and brain disorders partly shared molecular genetic mecha-
nisms. In this study, we examined the causal relations between 18 
common brain disorders and BAG and found that these causal rela-
tions were not statistically significant after applying multiple-testing 
correction. One possible interpretation for the weak associations is the 
inherent heterogeneity of brain disorders and brain aging. Yang et al. 
(53) identified brain aging heterogeneity with five dominant patterns 
of brain atrophy. Conditions such as AD, PD, and MDD exhibit 
diverse subtypes with distinct pathologies, genetic architectures, and 
clinical characteristics (54–57), which could weaken any shared as-
sociations with BAG. Thus, a more stringent sample selection might 
be required to detect the causal associations between BAG and brain 
disorders. On the other hand, the overall weak associations may also 
suggest that BAG reflects a more comprehensive digital phenotype of 
brain aging rather than serving as a pathological biomarker for a 

specific disorder. Nonetheless, individuals with brain disorders ex-
hibited higher BAG values compared to healthy participants, indicat-
ing that the causal relations of various brain disorders on BAG should 
be carefully tackled.

To efficiently identify potential drug targets for individuals with-
out brain disorders but at high risk for rapid brain aging, we con-
ducted a GWAS using participants from UKB who did not have any 
brain disorders. This allowed us to eliminate confounding factors 
such as changes in the brain caused by brain disorders, which could 
potentially contribute to abnormal aging. The GWAS analysis could 
pinpoint the BAG-associated loci but with unclear causal relation-
ship. Therefore, we genetically prioritized druggable genes that 
could potentially slow down brain aging by using cis-MR and colo-
calization approaches, along with GWAS of BAGs and xQTL data. 
Both blood and brain tissue eQTLs were incorporated in this study 
to encompass a wide range of genes. We present an approach to 
transition from genetically supported signals of BAG to identifying 
drug targets of brain aging. Among the identified drugged or drug-
gable genes (Table 1), we emphasize the promising potential of sev-
en specific genes, namely, MAPT, TNFSF12, GZMB, SIRPB1, C1RL, 
NMB, and GNLY. These genes are supported by at least three pieces 
of genetic evidence, suggesting their potential as viable drug targets 
for brain aging.

Targets with more causal genetic evidence support may be pri-
oritized. MAPT exhibits a negative and causal association with BAG 
in both blood and brain tissues (beta = −2.27 and −0.82, respec-
tively). In addition, the expression of MAPT at both transcript and 
protein levels is colocalized with BAG (PPH4 = 1 and 0.93, respec-
tively). However, these causal associations are supported by only 
one SNP in blood and brain, respectively, indicating weak reliability 
due to the presence of weak instruments. Meanwhile, higher levels 
of MAPT are positively associated with elevated glucose levels, SBP, 
DBP, and apolipoprotein A and an increased risk of PD. Although it 
has been suggested that reducing tau may alleviate the pathology of 
AD (51), the role of MAPT in the interaction between brain aging 
and certain brain disorders appears complex (51). Collectively, fur-
ther investigation of the role of MAPT in brain aging is warranted. 
TNFSF12, supported by four pieces of genetic evidence, demon-
strates a negative and causal association with BAG at both the tran-
script and protein levels. This association is observed in both the 
deCODE and INTRVAL pQTL datasets. Furthermore, TNF12, a 
cytokine belonging to the tumor necrosis factor (TNF) ligand fam-
ily, is colocalized with BAG. TNF12 (also known as TWEAK) plays 
an important role in blood-brain barrier inflammation (58) and has 
a protective effect on glucose homeostasis (59), both of which are 
highly involved in brain aging (48). Meanwhile, GNLY, GZMB, SIRPB1, 
NMB, and C1RL, with three pieces of genetic evidence in the post-
GWAS analysis, show promising in delaying brain aging. The ex-
pression of GNLY is positively and causally associated with BAG 
at both transcript and proteomic levels, and granulysin (encoded by 
GNLY) is colocalized with BAG (PPH4 = 1). Granulysin is an anti-
microbial and proinflammatory peptide in the granules of human 
cytotoxic T lymphocytes and natural killer cells and could activate 
expression of C-C Motif Chemokine Ligand 5 (CCL5), Monocyte 
chemoattractant protein-1 (MCP-1), IL-10, IL-1β, IL-6, and IFN-α 
(interferon-α) (60). Similarly, the expression of GZMB is negatively 
and causally associated with BAG at both transcript and pro-
teomic levels, and its protein, granzyme B, is colocalized with BAG 
(PPH4 = 1). Granzyme B, a serine protease, is known to mediate the 
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secretion of IL-8 and Macrophage inflammatory protein 2 (MIP2) (61) 
and has been implicated in skin aging and vascular wall inflammation 
(62, 63). Given that inflammation is an endogenous factor in aging, tar-
geting such pathways could be a potential antiaging strategy (64). Fur-
thermore, SIRPB1 demonstrates a causal association (beta = −0.07) 
with BAG, and the abundance of SIRB1 (encoded by SIRPB1) is co-
localized (PPH4 = 0.92) with BAG. SIRPB1, belonging to the im-
munoglobulin superfamily, has shown significant correlation in 
centenarian-based longevity genetic studies (65). NMB, a neuropep-
tide, is positively and causally associated with BAG. Notably, NMB is 
associated with eating behaviors and obesity (66), which are impor-
tant factors in aging (67). C1RL, a positively causal target for BAG in 
brain tissue, is colocalized with BAG within both deCODE and 
INTRVAL pQTL datasets (PPH4s = 1), and is associated with AD in the 
phenome-wide association study (PheWAS) result. Notably, C1RL is 
primarily involved in biological processes related to the immune re-
sponse and has been shown to activate genes encoding transcription 
factors related to crucial cellular processes and inflammation (68). 
Given the association of these genes with cellular processes and in-
flammation, which likely contribute to neuropathogenesis and subse-
quent brain aging (69, 70), TNFSF12, GNLY, GZMB, SIRPB1, NMB, 
and C1RL are prioritized targets for brain aging.

Several genes with two pieces of genetic evidence in the MR and 
colocalization analysis have shown promise as drug targets for brain 
aging. For instance, MPL encodes a protein similar to members of 
the hematopoietic receptor superfamily. Mutations in MPL can lead 
to thrombocytosis, resulting in abnormal MPL trafficking or recep-
tor activation (71). MPL is negatively and significantly associated 
with BAG (beta = −0.72) in the MR using blood eQTL data and 
colocalized with BAG (PPH4 = 1), suggesting that higher expres-
sion of MPL is causally associated with a younger brain age. Higher 
expression of MPL is significantly associated with lower SBP and 
DBP. Notably, cumulative blood pressure is associated with subse-
quent cognitive decline and dementia risk, suggesting that control-
ling blood pressure could be beneficial for both neurocognition and 
longevity (72, 73). These findings indicate that further investigation 
is warranted to understand how mutations in MPL are associated 
with brain aging. ALPL is also a promising target, as it is causally 
associated (beta = 1.1) and colocalized (PPH4 = 0.76) with BAG in 
brain tissue. ALPL is an age–up-regulated phosphatase, and inhibit-
ing ALPL can enhance transcytosis of plasma (74). Increased levels 
of ALPL in plasma are anticorrelated with cognitive performance 
(75). TUBB, a structural component of microtubules, is another MR 
target gene and colocalized with BAG (PPH4 = 0.96). TUBB is as-
sociated with cortical dysplasia, microcephaly, and developmental 
delay (76). RRM1, belonging to ribonucleotide reductase, is posi-
tively and causally associated (beta = 0.40) with BAG, and its pro-
tein is colocalized with BAG (PPH4 = 1). Recently, RRM1 has been 
found to be causally associated with telomere length, a hallmark of 
biological aging (77). CA4, positively and causally associated with 
BAG, is a zinc metalloenzyme and involved in blood-brain barrier 
crossing (78). The relations between the other MR genes and aging 
are described in the Supplementary Text. Collectively, we have iden-
tified several candidate targets for brain aging, supported by genetic 
evidence and the literature. Further research is needed to elucidate 
how these genes are involved in the aging process and to evaluate 
their potential as therapeutic targets.

To provide a comprehensive genetic profile and explore poten-
tial repurposing opportunities for the identified drug targets, we 

conducted a PheWAS analyzing variants within and around these 
targets across 44 traits. PheWAS, serving as a valuable tool for drug 
discovery, confirmed several previously known causal associations 
or biological pathways related to specific clinical traits. For in-
stance, it revealed associations between GDF15 and BMI (79), as 
well as MAPT and neurodegenerative disorders (80). Nevertheless, 
further investigations are needed to assess the causal relationship 
between each target and the corresponding trait, as well as to eval-
uate the potential beneficial or detrimental effects of modulating 
these targets for the prevention of brain aging from a pharmaco-
logical perspective.

Drug repurposing for the genetically supported druggable genes 
results in the rediscovery of 29 drugs, which are either in clinical 
trials for aging or have been previously reported as potential antiag-
ing drugs, indicating the power of our pipeline and highlights its 
effectiveness. The strategy of drug repurposing substantially im-
proves the success rate and reduces the likelihood of side effects as-
sociated with repurposed drugs for drug development. For instance, 
stavudine (targeting CYP2D6), a LINE1 reverse-transcriptase in-
hibitor, could rescue the young inflammation profile in mice and 
lower about 30% DNA methylation age, significantly improved 
health and life span of SIRT6 knockout mice (81). Sirolimus, also 
known as rapamycin, inhibits mTOR pathway and promotes health 
and longevity in diverse model organisms. It has beneficial effects on 
aging human organ systems, especially the brain and immune sys-
tem (82, 83). Sirolimus is involved in several ongoing aging-related 
clinical trials, such as resetting the epigenetic clock (NCT04608448), 
ovarian aging (NCT05836025), and preventing functional decline in 
older adults (NCT05237687). Therefore, our findings suggest that 
other drugs in our results may be repurposed to delay brain aging, 
and ongoing aging-related clinical trials of the rediscovered drugs 
further support this notion.

Moreover, among the 37 druggable genes supported by at least 
two pieces of genetic evidence, we have identified 28 drugs targeting 
MPL, CA4, TUBB, and RRM1, although neither in clinical trials nor 
reported previously have the potential to be repurposed for slowing 
down brain aging. Specifically, four drugs, namely, avatrombopag, 
eltrombopag, lusutrombopag, and romiplostim, which are typically 
used for thrombocytopenia, act as agonists for MPL. As mentioned 
above, MPL is a thrombopoietin receptor and has been linked to 
platelet count and brain morphology in the GWAS catalog. Notably, 
platelet signaling and aggregation pathway is enriched using the 64 
MR genes. It is worth noting that platelet count decreases during 
aging and is lower in men compared to women (84). A recent study 
of platelets has also revealed that platelets rejuvenate the aging brain 
(85). Schroer et al. (86) found that circulating platelet-derived fac-
tors could potentially serve as therapeutic targets to attenuate neuro-
inflammation and improve cognition in aging mice (86). Park et al. 
(87) reported that longevity factor klotho induces multiple platelet 
factors in plasma, enhancing cognition in the young brain and de-
creasing cognitive deficits in the aging brain (87). Leiter et al. (88) 
found that platelet-derived platelet factor 4, highly abundant che-
mokine in platelets, ameliorates hippocampal neurogenesis, and re-
stores cognitive function in aged mice. These findings suggest that 
the aforementioned drugs may enhance the expression of MPL, 
leading to increased platelet count and potentially contributing to a 
delay in brain aging. It is important to note that determining the 
significant tissue(s) for gene prioritization can be challenging. 
Although brain tissues may be more biologically relevant for brain 
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aging, circulating proteins have the capability to modulate brain ag-
ing as well (89, 90). Six drugs (cladribine, clofarabine, gallium ni-
trate, gemcitabine, hydroxyurea, and tezacitabine) are inhibitors 
of RRM1, whereas 12 drugs (brentuximab vedotin, cabazitaxel, cro-
libulin, indibulin, ixabepilone, paclitaxel, plinabulin, podofilox, 
trastuzumab emtansine, vinblastine, vinflunine, and vinorelbine) are 
inhibitors of TUBB. Most of these drugs targeting RRM1 and TUBB 
are antineoplastic agents used in cancer treatment. In addition, 
six drugs (acetazolamide, brinzolamide, chlorothiazide, methazol-
amide, topiramate, and trichlormethiazide) are inhibitors of CA4 
and most of them are used for hypertension.

There are a few limitations to this study: (i) The accurate estima-
tion of brain age is hindered by the lack of ground-truth brain bio-
logical age and discrepancies between brain biological age and 
chronological age in supposedly healthy individuals. The estimated 
brain age derived from MRI data includes inherent biases (91). Al-
though our model has shown better generalization performance 
compared to other models, there is always an expectation for a more 
accurate brain age estimation model that can deliver more robust 
outcomes for clinical applicants (3, 91). (ii) Potential data bias may 
affect the findings of this comprehensive study. For instance, the 
brain age estimation model and GWAS summary statistics primar-
ily relied on cohorts of European white individuals, potentially over-
looking druggable targets that would be effective in individuals of 
non-European ancestry. Validation using genomic and clinical data 
from more diverse populations could help remedy this limitation. 
(iii) Validation on independent discovery and replication cohorts 
would enhance the reliability of the identified genes as drug targets 
for the prevention of brain aging. Although we maximized statistical 
power using the UKB data as a large discovery cohort, the absence 
of a discovery-replication design is unavoidable. As large-scale data-
sets containing both MRI and genome-wide genotypes were not 
widely available, we used a combination of GWAS for BAG, MR 
with xQTL, colocalization analysis, MR-PheWAS, and the existing 
literature to carefully identify genetic targets that are supported by 
evidence for their involvement in brain aging. With the availability 
of more comprehensive proteomics platforms and the inclusion of 
more diverse non-European ancestry populations in studies, it is 
likely to replicate and validate our results. (iv) Brain aging is a com-
plex process involving numerous potential causes, such as aging of 
cerebral blood vessels (92), atrophy of the cerebral cortex (93), etc. 
These causes may overlap and interweave, undergoing considerable 
changes during brain aging (48). Although our study demonstrates 
the utility of systematically analyzing GWAS alongside extensive 
brain imaging information and xQTL analysis to enrich the identifi-
cation of drug targets, there remains a need for machine learning or 
statistical methods to address the various risk factors associated 
with brain aging. Fine-grained analysis is a must to comprehend the 
individualized causes and trajectories of brain aging, enabling the 
identification of effective drug targets and the use of precision med-
ications for the purpose of slowing down or even preventing brain 
aging. There is also an increasing need for comprehensive studies 
spanning different tissues and organs to evaluate tissue- or organ-
specific effects of targets, enabling the systematic prevention or 
treatment of human aging. (v) This study did not explore adverse 
effects of the rediscovered antiaging drugs. This is particularly im-
portant because healthy aging individuals should be encouraged to 
consider the potential risks associated with taking medications or 
supplements for slowing down aging as these interventions may 

have unintended negative consequences for both individuals and 
society. Alternatively, it is worthwhile to explore nonpharmacologi-
cal interventions/digital therapies that can help preserve mental and 
physical fitness in people during aging.

In summary, we present a systematic study for identify geneti-
cally supported targets and drugs for brain aging with deep learning-
based brain age estimation, GWAS for BAG, analysis of the relation 
between BAG and brain disorders, prioritization of targets using 
MR and colorization analysis for BAG with xQTL data, drug repur-
posing for these targets of BAG, and PheWAS. Our results offer the 
potential to mitigate the risk associated with drug discovery by 
identifying genetically supported targets and repurposing approved 
drugs to attenuate brain aging. We anticipate that our findings will 
serve as a valuable resource for prioritizing drug development ef-
forts for BAG, shedding light on the understanding of human brain 
aging and potentially extending the health span in humans.

MATERIALS AND METHODS
MRI datasets
We trained and evaluated our brain age estimation model using T1-
weighted MRI data from UKB (application number 89757). The 
UKB dataset consists of 42,904 subjects with T1-weighted MRI data, 
ranging in age from 45 to 82 years old. To account for potential pop-
ulation structure bias, we limited our analysis to 38,961 subjects of 
White British ancestry (Fig. 1A). Within this restricted dataset, 
there were 32,324 subjects without brain disorders, including 6036 
healthy individuals and 26,288 subjects without any brain disorders. 
In addition, there were 6637 subjects recorded with brain injury, 
neurodegeneration, or neuropsychiatric disorders.

To externally validate the performance and generalizability of 
our brain age estimation model, we used three other datasets: the 
ADNI dataset (https://adni.loni.usc.edu/), the PPMI dataset (https://
ppmi-info.org/), and the IXI dataset (https://brain-development.
org/ixi-dataset/). The ADNI dataset is a longitudinal multicenter 
study that includes participants categorized as cognitively normal 
(CN), mild cognitive impairment (MCI), and those with AD. We 
selected 1627 CN subjects from the ADNI datasets, ranging in age 
from 60 to 96 years old. The PPMI dataset comprises subjects with 
PD at various stages, from prodromal to moderate disease, enrolled 
at ~50 sites. This dataset provides comprehensive longitudinal data 
on clinical features and MRI outcomes. We specifically extracted 
T1-weighted MRI scans from 259 healthy participants aged between 
45 and 83 years old. The IXI dataset consists of nearly 600 MRI im-
ages from normal and healthy participants of various ages collected 
across three hospitals in London. From this dataset, we extracted 
313 healthy participants aged between 45 and 84 years old.

MRI data preprocessing
For the UKB dataset, we used T1-weighted data that had already 
been registered to the Montreal Neurological Institute 152 (MNI152) 
standard space. As for the validation datasets (IXI, ADNI, and 
PPMI), we preprocessed the T1-weighted MRI data using a minimal 
preprocessing scheme with tools from FSL (94, 95) (FMRIB Soft-
ware, version 6.0.5, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). First, we 
reoriented the generated volume of the raw MRI images to match 
the standard direction in FSL. Second, we cropped the MRI images, 
removing the neck and everything below the head region. In addi-
tion, we performed bias field correction (without segmentation) and 
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eliminated non-brain tissue from the entire head images. Last, we ap-
plied linear and nonlinear registration techniques with 6 degrees of 
freedom to align the MRI images with the standard MNI152 template. 
All preprocessed MRI volumes had a voxel size of 182 × 218 × 182 and 
maintained an isotropic spatial resolution of 1 mm3.

Brain age estimation
We trained seven state-of-the-art deep learning models (96), namely, 
ResNet, VGGNet, EfficientNet, SFCN, DenseNet, GLT, and 3D-ViT 
model for brain age estimation (Fig. 1A). A systematic compari-
son of these six deep learning models for brain age estimation using 
MRI samples from the UKB demonstrates that 3D-ViT outper-
formed the other models. Hence, we chose 3D-ViT for brain age 
estimation in the subsequent analyses. Briefly, we first resized T1 
weighted MRI images to a resolution of 128 × 128 × 128 as input to 
the model. We used the multihead attention mechanism of the 3D-
ViT to divide the original MRI image into a set of 3D patches (patch 
size: 16 × 16 × 16). These patches were processed through a trans-
former encoder, which measured attention scores between them. A 
multilayer perceptron header was then used to summarize the out-
puts from the transformer encoder for brain age estimation.

We implemented 3D-ViT for brain age estimation (Fig. 2A) using 
PyTorch (version 1.13.1, CUDA version 8.6). The model was trained 
on 90% (29,097 of 32,324 subjects) of the subjects without brain dis-
orders. The training data was adjusted by sex and site effect. The re-
maining 9864 subjects (including 3227 non-brain disorder subjects) 
were reserved for testing. We used a fivefold cross-validation strategy 
to train the model. The training data was randomly divided into five 
folds, with four folds used for training and the remaining fold for 
evaluation. This process was repeated five times, resulting in brain 
age estimation for all training subjects. Subsequently, the trained 
model was used to estimate brain age on the testing dataset and three 
external datasets: ADNI, PPMI, and IXI. The model’s performance 
was evaluated using MAE, MSE, R2, and r between the estimated 
brain age and chronological age. The model was optimized using the 
Adam optimizer with 200 epochs and a learning rate of 2.0 × 10−5. 
We performed early stopping to prevent potential overfitting prob-
lems if the validation error did not improve within 10 epochs.

Interpretation of brain age estimation with saliency maps
Saliency maps were computed for the used 3D-ViT model by calculat-
ing the gradients on the test data. Specifically, the MSE loss was com-
puted between the estimated brain age and the chronological age, and 
then backpropagation was used to determine the gradient of this loss 
with respect to the input MRI images. Then, the saliency value of each 
voxel was obtained by taking the absolute value of the gradient, which 
represents the magnitude of influence of that voxel on the model’s 
prediction. Subsequently, these saliency maps were normalized to 
generate saliency probability maps, thereby providing a probabilistic 
interpretation of voxel-wise significance in age estimation.

GWAS on BAG
We conducted the GWAS analysis using genotyped and imputed 
data obtained from UKB (GRCh37 assembly) on 31,520 non-brain 
disorder participants (Fig. 1B). Subjects with brain disorders were 
not used in the GWASs to avoid the confounding effects from brain 
disorders. In brief, the samples were genotyped using the Affyme-
trix BiLEVE and Axiom arrays, and untyped variants were imputed 
using the Haplotype Reference Consortium, 1000 Genomes, and 

UK10K as reference panels (35). Standard quality control proce-
dures were applied to exclude samples and SNPs that did not meet 
certain criteria. Samples with a phenotype deletion rate above 0.05, 
minor allele frequencies below 0.01, and deviations from Hardy-
Weinberg equilibrium (P < 1 × 10−6) were removed. For the genetic 
association analysis, we used Plink software (version 1.90 beta, 
https://cog-genomics.org/plink/) and assumed an additive genetic 
model. Covariates including chronological age, sex, and the top 10 
principal components were included to account for population 
stratification, suggested by (25,  97). The standard GWAS signifi-
cance threshold was set as 5.0 × 10−8.

In addition to the continuous BAG-based GWAS, we implement-
ed a case-control grouping strategy using a specific threshold value 
μ of BAG. This allowed us to categorize subjects into two nonoverlap 
groups for conducting case-control BAG-based GWAS. In particular, 
we conducted GWASs by comparing of BAG > μ versus BAG ≤ μ, 
BAG < −μ versus BAG ≥ −μ (μ = 1, 2, 3, 4, and 5, respectively) and 
the highest 25% of BAG versus the lowest 25% of BAG. Thereafter, 
we evaluated the statistical power of each GWAS, by calculating the 
number of independent genome-wide-significant loci and other 
relevant statistics. Our results demonstrated that the GWAS using 
continuous BAG exhibited the highest statistical power among all 
the GWASs we implemented (table S2). Hence, we chose to use 
the GWAS results obtained from the continuous BAG for subse-
quent analyses.

Post-GWAS annotations
We used the web application Functional Mapping and Annotation 
(FUMA) (98) to annotate BAG-associated SNPs and perform gene 
mapping (Fig. 1B). Independent significant SNPs were identified us-
ing the LD reference panel from UKB release 2b 10k White British 
with the following parameters: P value  =  5  ×  10−8, r2  =  0.6, and 
second r2  =  0.1. The standard interregional distance threshold of 
250 kb were used, as per the default settings in FUMA (98), where 
SNPs with the smallest association P values were selected as the 
lead SNPs for the corresponding regions. Genes falling within the 
boundaries of each region, determined by their genomic coordi-
nates, were assigned to the corresponding region. In addition, we 
examined the expression levels of the annotated genes linked to the 
associated SNPs across 54 tissue types using the GTEx v8 dataset.

Genetic correlation between BAG and brain 
disorders/phenotypic traits
We assessed the genetic correlations between BAG and 18 common 
brain disorders (Fig. 1C): neurodegenerative disorders (AD, PD, MS, 
and EP), psychiatric disorders (AN, ANX, BIP, MDD, OCD, PTSD, 
TS, SCZ, and SLD), and stroke (stroke, ischemic stroke, large artery 
stroke, cardioembolic stroke, and small vessel stroke). GWAS sum-
mary statistics for AD, MS, AN, ANX, BIP, MDD, OCD, PTSD, 
and SCZ were obtained from the Psychiatric Genomics Consortium 
(https://med.unc.edu/pgc/download-results). GWAS summary sta-
tistics for PD were obtained from the International Parkinson Disease 
Genomics Consortium (https://gwas.mrcieu.ac.uk/datasets/ieu-b-7/). 
In addition, GWAS summary statistics for stroke were downloaded 
from the MEGASTROKE consortium (http://megastroke.org/) (99) 
and GWAS summary statistics for MS, EP, and SLD were downloaded 
from the FinnGen project (https://finngen.fi), a resource known for 
its comprehensive genetic data derived from the Finnish population. 
Data S23 provides detailed population information for each GWAS 
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summary used in this study. We used LDSC (28) to estimate SNP 
heritability for GWAS summary statistics of BAG and genetic correla-
tions between BAG and the 18 brain disorders. Only high-quality 
SNPs published in the HapMap3 dataset were used for estimation. 
The LD score derived from the 1000 Genomes projects phase 3 EUR 
dataset (1KGp3) was used for LDSC analysis. To correct for multiple 
testing across all brain disorders, we applied the Benjamini-Hochberg 
FDR procedure. The statistically significant threshold was set at FDR-
corrected P < 0.05.

In addition, we assessed the genetic correlations between BAG 
and eight phenotypic traits (Fig. 1C): alcoholic drinks per week, ciga-
rettes per day, education years, insomnia, intelligence, neuroticism, 
obesity, and smoking initiation. Specifically, GWAS summary statis-
tics for alcoholic drinks per week, cigarettes per day, and the smoking 
initiation were sourced from the GSCAN Consortium (GWAS & 
Sequencing Consortium of Alcohol and Nicotine use; https://gscan.
eu/). In addition, GWAS summary statistics for insomnia and obesity 
were acquired from the FinnGen project (https://finngen.fi). The 
educational attainment, quantified in terms of years of education, 
was analyzed based on data provided by Rietveld et al. (100) from the 
SSGAC (Social Science Genetic Association Consortium). Further-
more, GWAS summary statistics for neuroticism were obtained from 
the Genetics of Personality Consortium. Last, GWAS summary sta-
tistics for intelligence were sourced from the GWAS catalog (https://
ebi.ac.uk/gwas/home). Data S23 provides detailed information of 
GWAS summaries for these traits.

MR between BAG and brain disorders/phenotypic traits
Bidirectional two-sample MR was conducted to examine the causal 
relations between BAG and 18 common brain disorders (Fig. 1D) 
and between BAG and eight phenotypic traits (Fig. 1D). All MR 
analyses in this study used the R package “TwoSampleMR” (version 
0.5.6) with five default methods: inverse variance weighted (IVW), 
MR-Egger, weighted median, simple mode, and weight Mode. As 
exposure data, we selected SNPs that surpassed the significance 
threshold (P < 5.0 × 10−8) as instrument variables for each GWAS 
summary. These selected SNPs were then clumped at an r2  =  0.1 
within a 1000-kb window size, using the LD panel of 1KGp3 to account 
for LD and minimize interference. F-statistic was used to filter out 
weak instruments, i.e., SNPs with low statistical power (F-statistic < 
10). Thereafter, the exposure and outcome data were harmonized 
based on the same effect alleles and palindromic SNPs were re-
moved before conducting the MR analysis. In the MR analysis, an 
FDR-corrected P value less than 0.05 is considered significant, 
which is also applicable to all the following MR analysis.

MR using cis-eQTL analysis
Tissue-specific cis-eQTL data were obtained from two consortia: 
eQTLGen (Blood eQTLs; https://eqtlgen.org/) (101) and PsychENCODE 
(Brain tissue eQTLs; http://resource.psychencode.org/) (102). From 
the eQTLGen consortium, we downloaded full significant cis-eQTL 
results with an FDR-corrected P value < 0.05, along with allele fre-
quency information. From the PsychENCODE consortia, we obtained 
eQTLs (FDR-corrected P < 0.05) for genes with expression >0.1 FPKM 
(fragments per kilobase per million mapped fragments) in at least 
10 samples, as well as all SNP information (103). Specifically, the ob-
tained eQTL data includes 10,507,664 cis-eQTLs for 16,987 genes 
associated with blood eQTLs and 6,378,784 cis-eQTLs for 32,944 
genes associated with brain tissue eQTLs.

Thereafter, we used the druggable genome data, containing 4479 
druggable genes and obtained from Finan et al. (34), to filter genes 
of eQTL and pQTL. First, we removed nonautosomal genes, result-
ing in 4317 druggable genes. Then, we filtered genes for both eQTL 
datasets and cis-eQTLs within 250-kb upstream or downstream of 
the target druggable gene. This process yielded 2682 druggable 
genes specifically associated with blood and 2915 druggable genes 
associated with brain tissues.

To assess the causal effects of these druggable genes on BAG, we 
conducted cis-MR analysis using the same clumping and harmoniz-
ing metrics as the MR analysis between BAG and brain disorders 
(Fig. 1E). For genes that had only one SNP available, Wald ratios 
were calculated. In cases where multiple SNPs were present, the 
IVW method was used for the cis-MR analysis. However, it is im-
portant to consider the potential bias introduced by genetic variants 
influencing the outcome through a pathway other than the exposure 
(i.e., horizontal pleiotropy) (104). To address this concern, we per-
formed the MR-Egger intercept test as a sensitivity analysis when 
three or more SNPs were available. A P value greater than 0.05 indi-
cates nonsignificant horizontal pleiotropy. Of note, this strategy is 
also applied to the following MR analyses. In addition, we used clus-
terProfiler (105) to implement the Reactome pathway enrichment 
analysis with the MR-identified genes.

Colocalization analysis
The colocalization analysis between the genes identified with MR 
effects and BAG was conducted using the R package “coloc” to pro-
vide additional confirmation that the gene expression and BAG 
shared the same causal variant within the region of interest (Fig. 
1E). This analysis aimed to distinguish whether the variant sharing 
was coincidental due to correlation through LD or if it indicated a 
true causal relationship. For each gene tested, we used default priors: 
P1 = 10−4, P2 = 10−4, and P12 = 10−5, where P1, P2, and P12 are the 
prior probabilities that a SNP in the tested region is significantly as-
sociated with the expression of the tested gene and BAG, or both, 
respectively (106). The colocalization yields posterior probabilities 
associated with five hypotheses: PPH0 (no association with either 
trait), PPH1 (association with expression of the gene but not with 
BAG), PPH2 (association with BAG but not expression of the gene), 
PPH3 (association with the BAG and expression of the gene, with 
distinct causal variants), and PPH4 (association with BAG and ex-
pression of the gene, with a shared causal variant). Following the 
commonly used setting (106), we considered SNPs reaching a poste-
rior probability of PPH4 > 0.75 as colocalized SNPs (106).

pQTL analysis
We used pQTL data from two large-scale studies: the INTERVAL 
study (https://www.ebi.ac.uk/gwas/publications/29875488) (107) 
and the deCODE study (https://decode.com/) (108). The INTERVAL 
study involved the measurement of 3622 proteins in 3301 healthy 
European blood donors, leading to the identification of 1927 pQTLs 
for 1478 proteins. The deCODE study conducted GWAS of plasma 
protein levels using 4907 aptamers in a cohort of 35,559 Icelanders. 
Specifically, we identified pQTLs available from these two studies 
for 38 druggable genes associated with BAG among the 64 druggable 
genes. All pQTLs included in our analysis exhibited FDR-corrected 
P values < 0.05 in their respective original pQTL studies. The MR 
and colocalization analysis using pQTL are similar to that using eQTL 
data as described above (Fig. 1F).
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Phenome-wide scan for the BAG-associated 
druggable genes
For genes that were identified with a causal effect on BAG, we evalu-
ated their effects on 44 clinically relevant biomarkers or diseases by 
combining the cis-MR with a phenome-wide scan (Fig. 1G). This 
allowed us to further investigate the potential druggable genetic ef-
fects that could be relevant for future drug development programs. 
As appropriate, we considered a nominal P value < 0.05 to be sig-
nificant, and we applied a conservative threshold of FDR-corrected 
P value < 0.05. Detailed information of the GWAS summary for the 
44 clinically relevant biomarkers or diseases is provided in table S5.

Drug repurposing
Drug repurposing for brain aging is implemented using the 64 drug-
gable targets (Fig. 1H). The drug and target information were re-
trieved from the DGIdb webserver, which stands for the Drug 
Gene Interaction Database (https://dgidb.org, accessed in June 2023) 
(109). The clinical trial stage of these drugs was obtained from the 
DrugBank database (https://go.drugbank.com/, version 5.1.8, down-
loaded in June 2021) (110), and the indications of the drugs were 
downloaded from the ChEMBL database (https://ebi.ac.uk/chembl, 
version 33, accessed in July 2023) (31). The R package “dplyr” was 
used to query the localized DrugBank and ChEMBL databases.
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