2025-11-11-9_articles_updated

1 minute read

Published:

期刊: Nature

标题: 非洲终于拥有了自己的药物监管机构——这可能会改变整个大陆的医疗状况。

英文标题: Africa finally has its own drug-regulation agency — and it could transform the continent’s health

链接: https://www.nature.com/articles/d41586-025-03637-w

期刊: Nature Aging

标题: 《延缓衰老的多语种指南》

英文标题: A multilingual guide to slowing aging

链接: https://www.nature.com/articles/s43587-025-01007-9

期刊: Nature Aging

标题: 多语言能力在27个欧洲国家的横断面和纵向分析中保护免受加速衰老

英文标题: Multilingualism protects against accelerated aging in cross-sectional and longitudinal analyses of 27 European countries

链接: https://www.nature.com/articles/s43587-025-01000-2

期刊: Computational biology and bioinformatics : nature.com subject feeds

标题: 多语言能力可保护27个欧洲国家横断面和纵向分析中的加速衰老

英文标题: Multilingualism protects against accelerated aging in cross-sectional and longitudinal analyses of 27 European countries

链接: https://www.nature.com/articles/s43587-025-01000-2

期刊: Computational biology and bioinformatics : nature.com subject feeds

标题: 利用深度学习自动检测胸部CT上的射线透亮异物吸入

英文标题: Automated detection of radiolucent foreign body aspiration on chest CT using deep learning

链接: https://www.nature.com/articles/s41746-025-02097-w

期刊: bioRxiv Subject Collection: Bioinformatics

标题: 评估机器学习在古代DNA年龄预测中的可行性:局限性及见解

英文标题: Assessing the feasibility of machine learning for ancient DNA age prediction: limitations and insights

链接: https://www.biorxiv.org/content/10.1101/2025.11.09.687346v1?rss=1

期刊: bioRxiv Subject Collection: Bioinformatics

标题: 学习未知:使用Prosit-PTM的数据增强深度学习进行PTM发现

英文标题: Learning the Unseen: Data-Augmented Deep Learning for PTM Discovery with Prosit-PTM

链接: https://www.biorxiv.org/content/10.1101/2025.11.07.687302v1?rss=1

期刊: bioRxiv Subject Collection: Bioinformatics

标题: 一个用于在细胞嵌入中识别通用衰老特征的解释性人工智能框架

英文标题: An Explainable AI Framework for Identifying Universal Aging Signatures in Cell Embeddings

链接: https://www.biorxiv.org/content/10.1101/2025.11.07.687286v1?rss=1

期刊: bioRxiv Subject Collection: Bioinformatics

标题: 基于深度学习的动态增强分子性质预测

英文标题: Dynamics-enhanced Molecular Property Prediction Guided by Deep Learning

链接: https://www.biorxiv.org/content/10.1101/2025.11.07.687115v1?rss=1