2025-12-09-16_articles_updated

1 minute read

Published:

期刊: Nature Methods

标题: 破解癌症微生物组

英文标题: Cracking the cancer microbiome

链接: https://www.nature.com/articles/s41592-025-02953-3

期刊: Computational biology and bioinformatics : nature.com subject feeds

标题: 多维度组学整合机器学习框架识别巨噬细胞-成纤维细胞-肿瘤共浸润模式以预测胃癌预后

英文标题: Multi-dimensional omics integrated machine learning framework identifies macrophage-fibroblast-tumor co-infiltration patterns to predict prognosis in gastric cancer

链接: https://www.nature.com/articles/s41746-025-02179-9

期刊: Computational biology and bioinformatics : nature.com subject feeds

标题: 破解癌症微生物组

英文标题: Cracking the cancer microbiome

链接: https://www.nature.com/articles/s41592-025-02953-3

期刊: Computational biology and bioinformatics : nature.com subject feeds

标题: Mammo-AGE:基于深度学习的从乳腺X光片估算乳腺年龄

英文标题: Mammo-AGE: deep learning estimation of breast age from mammograms

链接: https://www.nature.com/articles/s41467-025-65923-5

期刊: Computational biology and bioinformatics : nature.com subject feeds

标题: 利用机器学习开发、验证和预后评估MASHRisk评分:多队列研究中的见解

英文标题: Harnessing machine learning for the development, validation, and prognostic evaluation of MASHRisk score: insights from a multicohort study

链接: https://www.nature.com/articles/s41746-025-02220-x

期刊: cs.LG updates on arXiv.org

标题: 通过多保真机器学习连接量子计算与经典计算以解决偏微分方程

英文标题: Bridging quantum and classical computing for partial differential equations through multifidelity machine learning

链接: https://arxiv.org/abs/2512.05241

期刊: cs.LG updates on arXiv.org

标题: 当忘记成本为零时:利用低影响力点来降低计算成本

英文标题: When unlearning is free: leveraging low influence points to reduce computational costs

链接: https://arxiv.org/abs/2512.05254

期刊: cs.LG updates on arXiv.org

标题: DMAGT:通过图转换模型整合SMILES和RNA序列结构揭示miRNA-药物关联

英文标题: DMAGT: Unveiling miRNA-Drug Associations by Integrating SMILES and RNA Sequence Structures through Graph Transformer Models

链接: https://arxiv.org/abs/2512.05287

期刊: cs.LG updates on arXiv.org

标题: 科学机器学习中使用稀疏变分高斯过程Kolmogorov-Arnold网络的不确定性量化

英文标题: Uncertainty Quantification for Scientific Machine Learning using Sparse Variational Gaussian Process Kolmogorov-Arnold Networks (SVGP KAN)

链接: https://arxiv.org/abs/2512.05306

期刊: cs.LG updates on arXiv.org

标题: 智能挖掘时间:用于比特币硬件投资回报率预测的深度学习框架

英文标题: Smart Timing for Mining: A Deep Learning Framework for Bitcoin Hardware ROI Prediction

链接: https://arxiv.org/abs/2512.05402

期刊: cs.LG updates on arXiv.org

标题: 如何通过集成学习平衡准确性和过拟合:从表格数据的偏差-方差角度分析

英文标题: How Ensemble Learning Balances Accuracy and Overfitting: A Bias-Variance Perspective on Tabular Data

链接: https://arxiv.org/abs/2512.05469

期刊: cs.LG updates on arXiv.org

标题: 利用可解释机器学习对太空用低挥发性润滑剂的计算设计

英文标题: Computational Design of Low-Volatility Lubricants for Space Using Interpretable Machine Learning

链接: https://arxiv.org/abs/2512.05870

期刊: cs.LG updates on arXiv.org

标题: 通过机器学习开发用于企业级商业调查的合成微数据

英文标题: Developing synthetic microdata through machine learning for firm-level business surveys

链接: https://arxiv.org/abs/2512.05948

期刊: cs.LG updates on arXiv.org

标题: PoolNet:用于2D到3D视频处理验证的深度学习

英文标题: PoolNet: Deep Learning for 2D to 3D Video Process Validation

链接: https://arxiv.org/abs/2512.05362

期刊: cs.LG updates on arXiv.org

标题: 模型网关:模型驱动的药物发现模型管理平台

英文标题: Model Gateway: Model Management Platform for Model-Driven Drug Discovery

链接: https://arxiv.org/abs/2512.05462

期刊: cs.LG updates on arXiv.org

标题: 数据增强深度学习在井下深度传感和现场验证中的应用

英文标题: Data-Augmented Deep Learning for Downhole Depth Sensing and Field Validation

链接: https://arxiv.org/abs/2511.00129